Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1 | /** |
| 2 | * \file psa/crypto_values.h |
| 3 | * |
| 4 | * \brief PSA cryptography module: macros to build and analyze integer values. |
| 5 | * |
| 6 | * \note This file may not be included directly. Applications must |
| 7 | * include psa/crypto.h. Drivers must include the appropriate driver |
| 8 | * header file. |
| 9 | * |
| 10 | * This file contains portable definitions of macros to build and analyze |
| 11 | * values of integral types that encode properties of cryptographic keys, |
| 12 | * designations of cryptographic algorithms, and error codes returned by |
| 13 | * the library. |
| 14 | * |
Gilles Peskine | 7973399 | 2022-06-20 18:41:20 +0200 | [diff] [blame] | 15 | * Note that many of the constants defined in this file are embedded in |
| 16 | * the persistent key store, as part of key metadata (including usage |
| 17 | * policies). As a consequence, they must not be changed (unless the storage |
| 18 | * format version changes). |
| 19 | * |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 20 | * This header file only defines preprocessor macros. |
| 21 | */ |
| 22 | /* |
Bence Szépkúti | 1e14827 | 2020-08-07 13:07:28 +0200 | [diff] [blame] | 23 | * Copyright The Mbed TLS Contributors |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 24 | * SPDX-License-Identifier: Apache-2.0 |
| 25 | * |
| 26 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
| 27 | * not use this file except in compliance with the License. |
| 28 | * You may obtain a copy of the License at |
| 29 | * |
| 30 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 31 | * |
| 32 | * Unless required by applicable law or agreed to in writing, software |
| 33 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 34 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 35 | * See the License for the specific language governing permissions and |
| 36 | * limitations under the License. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 37 | */ |
| 38 | |
| 39 | #ifndef PSA_CRYPTO_VALUES_H |
| 40 | #define PSA_CRYPTO_VALUES_H |
Mateusz Starzyk | 363eb29 | 2021-05-19 17:32:44 +0200 | [diff] [blame] | 41 | #include "mbedtls/private_access.h" |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 42 | |
| 43 | /** \defgroup error Error codes |
| 44 | * @{ |
| 45 | */ |
| 46 | |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 47 | /* PSA error codes */ |
| 48 | |
Gilles Peskine | 7973399 | 2022-06-20 18:41:20 +0200 | [diff] [blame] | 49 | /* Error codes are standardized across PSA domains (framework, crypto, storage, |
Gilles Peskine | 955993c | 2022-06-29 14:37:17 +0200 | [diff] [blame] | 50 | * etc.). Do not change the values in this section or even the expansions |
| 51 | * of each macro: it must be possible to `#include` both this header |
| 52 | * and some other PSA component's headers in the same C source, |
| 53 | * which will lead to duplicate definitions of the `PSA_SUCCESS` and |
| 54 | * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand |
| 55 | * to the same sequence of tokens. |
| 56 | * |
| 57 | * If you must add a new |
Gilles Peskine | 7973399 | 2022-06-20 18:41:20 +0200 | [diff] [blame] | 58 | * value, check with the Arm PSA framework group to pick one that other |
| 59 | * domains aren't already using. */ |
| 60 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 61 | /** The action was completed successfully. */ |
| 62 | #define PSA_SUCCESS ((psa_status_t)0) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 63 | |
| 64 | /** An error occurred that does not correspond to any defined |
| 65 | * failure cause. |
| 66 | * |
| 67 | * Implementations may use this error code if none of the other standard |
| 68 | * error codes are applicable. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 69 | #define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 70 | |
| 71 | /** The requested operation or a parameter is not supported |
| 72 | * by this implementation. |
| 73 | * |
| 74 | * Implementations should return this error code when an enumeration |
| 75 | * parameter such as a key type, algorithm, etc. is not recognized. |
| 76 | * If a combination of parameters is recognized and identified as |
| 77 | * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 78 | #define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 79 | |
| 80 | /** The requested action is denied by a policy. |
| 81 | * |
| 82 | * Implementations should return this error code when the parameters |
| 83 | * are recognized as valid and supported, and a policy explicitly |
| 84 | * denies the requested operation. |
| 85 | * |
| 86 | * If a subset of the parameters of a function call identify a |
| 87 | * forbidden operation, and another subset of the parameters are |
| 88 | * not valid or not supported, it is unspecified whether the function |
| 89 | * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or |
| 90 | * #PSA_ERROR_INVALID_ARGUMENT. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 91 | #define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 92 | |
| 93 | /** An output buffer is too small. |
| 94 | * |
| 95 | * Applications can call the \c PSA_xxx_SIZE macro listed in the function |
| 96 | * description to determine a sufficient buffer size. |
| 97 | * |
| 98 | * Implementations should preferably return this error code only |
| 99 | * in cases when performing the operation with a larger output |
| 100 | * buffer would succeed. However implementations may return this |
| 101 | * error if a function has invalid or unsupported parameters in addition |
| 102 | * to the parameters that determine the necessary output buffer size. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 103 | #define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 104 | |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 105 | /** Asking for an item that already exists |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 106 | * |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 107 | * Implementations should return this error, when attempting |
| 108 | * to write an item (like a key) that already exists. */ |
| 109 | #define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 110 | |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 111 | /** Asking for an item that doesn't exist |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 112 | * |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 113 | * Implementations should return this error, if a requested item (like |
| 114 | * a key) does not exist. */ |
| 115 | #define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 116 | |
| 117 | /** The requested action cannot be performed in the current state. |
| 118 | * |
| 119 | * Multipart operations return this error when one of the |
| 120 | * functions is called out of sequence. Refer to the function |
| 121 | * descriptions for permitted sequencing of functions. |
| 122 | * |
| 123 | * Implementations shall not return this error code to indicate |
Adrian L. Shaw | 67e1c7a | 2019-05-14 15:24:21 +0100 | [diff] [blame] | 124 | * that a key either exists or not, |
| 125 | * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST |
Adrian L. Shaw | d56456c | 2019-05-15 11:36:13 +0100 | [diff] [blame] | 126 | * as applicable. |
| 127 | * |
| 128 | * Implementations shall not return this error code to indicate that a |
Ronald Cron | cf56a0a | 2020-08-04 09:51:30 +0200 | [diff] [blame] | 129 | * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE |
Adrian L. Shaw | d56456c | 2019-05-15 11:36:13 +0100 | [diff] [blame] | 130 | * instead. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 131 | #define PSA_ERROR_BAD_STATE ((psa_status_t)-137) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 132 | |
| 133 | /** The parameters passed to the function are invalid. |
| 134 | * |
| 135 | * Implementations may return this error any time a parameter or |
| 136 | * combination of parameters are recognized as invalid. |
| 137 | * |
Adrian L. Shaw | d56456c | 2019-05-15 11:36:13 +0100 | [diff] [blame] | 138 | * Implementations shall not return this error code to indicate that a |
Ronald Cron | cf56a0a | 2020-08-04 09:51:30 +0200 | [diff] [blame] | 139 | * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 140 | * instead. |
| 141 | */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 142 | #define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 143 | |
| 144 | /** There is not enough runtime memory. |
| 145 | * |
| 146 | * If the action is carried out across multiple security realms, this |
| 147 | * error can refer to available memory in any of the security realms. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 148 | #define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 149 | |
| 150 | /** There is not enough persistent storage. |
| 151 | * |
| 152 | * Functions that modify the key storage return this error code if |
| 153 | * there is insufficient storage space on the host media. In addition, |
| 154 | * many functions that do not otherwise access storage may return this |
| 155 | * error code if the implementation requires a mandatory log entry for |
| 156 | * the requested action and the log storage space is full. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 157 | #define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 158 | |
| 159 | /** There was a communication failure inside the implementation. |
| 160 | * |
| 161 | * This can indicate a communication failure between the application |
| 162 | * and an external cryptoprocessor or between the cryptoprocessor and |
| 163 | * an external volatile or persistent memory. A communication failure |
| 164 | * may be transient or permanent depending on the cause. |
| 165 | * |
| 166 | * \warning If a function returns this error, it is undetermined |
| 167 | * whether the requested action has completed or not. Implementations |
Gilles Peskine | be06133 | 2019-07-18 13:52:30 +0200 | [diff] [blame] | 168 | * should return #PSA_SUCCESS on successful completion whenever |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 169 | * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE |
| 170 | * if the requested action was completed successfully in an external |
| 171 | * cryptoprocessor but there was a breakdown of communication before |
| 172 | * the cryptoprocessor could report the status to the application. |
| 173 | */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 174 | #define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 175 | |
| 176 | /** There was a storage failure that may have led to data loss. |
| 177 | * |
| 178 | * This error indicates that some persistent storage is corrupted. |
| 179 | * It should not be used for a corruption of volatile memory |
Gilles Peskine | 4b3eb69 | 2019-05-16 21:35:18 +0200 | [diff] [blame] | 180 | * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 181 | * between the cryptoprocessor and its external storage (use |
| 182 | * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is |
| 183 | * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE). |
| 184 | * |
| 185 | * Note that a storage failure does not indicate that any data that was |
| 186 | * previously read is invalid. However this previously read data may no |
| 187 | * longer be readable from storage. |
| 188 | * |
| 189 | * When a storage failure occurs, it is no longer possible to ensure |
| 190 | * the global integrity of the keystore. Depending on the global |
| 191 | * integrity guarantees offered by the implementation, access to other |
| 192 | * data may or may not fail even if the data is still readable but |
Gilles Peskine | bf7a98b | 2019-02-22 16:42:11 +0100 | [diff] [blame] | 193 | * its integrity cannot be guaranteed. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 194 | * |
| 195 | * Implementations should only use this error code to report a |
| 196 | * permanent storage corruption. However application writers should |
| 197 | * keep in mind that transient errors while reading the storage may be |
| 198 | * reported using this error code. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 199 | #define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 200 | |
| 201 | /** A hardware failure was detected. |
| 202 | * |
| 203 | * A hardware failure may be transient or permanent depending on the |
| 204 | * cause. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 205 | #define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 206 | |
| 207 | /** A tampering attempt was detected. |
| 208 | * |
| 209 | * If an application receives this error code, there is no guarantee |
| 210 | * that previously accessed or computed data was correct and remains |
| 211 | * confidential. Applications should not perform any security function |
| 212 | * and should enter a safe failure state. |
| 213 | * |
| 214 | * Implementations may return this error code if they detect an invalid |
| 215 | * state that cannot happen during normal operation and that indicates |
| 216 | * that the implementation's security guarantees no longer hold. Depending |
| 217 | * on the implementation architecture and on its security and safety goals, |
| 218 | * the implementation may forcibly terminate the application. |
| 219 | * |
| 220 | * This error code is intended as a last resort when a security breach |
| 221 | * is detected and it is unsure whether the keystore data is still |
| 222 | * protected. Implementations shall only return this error code |
| 223 | * to report an alarm from a tampering detector, to indicate that |
| 224 | * the confidentiality of stored data can no longer be guaranteed, |
| 225 | * or to indicate that the integrity of previously returned data is now |
| 226 | * considered compromised. Implementations shall not use this error code |
| 227 | * to indicate a hardware failure that merely makes it impossible to |
| 228 | * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE, |
| 229 | * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE, |
| 230 | * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code |
| 231 | * instead). |
| 232 | * |
| 233 | * This error indicates an attack against the application. Implementations |
| 234 | * shall not return this error code as a consequence of the behavior of |
| 235 | * the application itself. */ |
Gilles Peskine | 4b3eb69 | 2019-05-16 21:35:18 +0200 | [diff] [blame] | 236 | #define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 237 | |
| 238 | /** There is not enough entropy to generate random data needed |
| 239 | * for the requested action. |
| 240 | * |
| 241 | * This error indicates a failure of a hardware random generator. |
| 242 | * Application writers should note that this error can be returned not |
| 243 | * only by functions whose purpose is to generate random data, such |
| 244 | * as key, IV or nonce generation, but also by functions that execute |
| 245 | * an algorithm with a randomized result, as well as functions that |
| 246 | * use randomization of intermediate computations as a countermeasure |
| 247 | * to certain attacks. |
| 248 | * |
| 249 | * Implementations should avoid returning this error after psa_crypto_init() |
| 250 | * has succeeded. Implementations should generate sufficient |
| 251 | * entropy during initialization and subsequently use a cryptographically |
| 252 | * secure pseudorandom generator (PRNG). However implementations may return |
| 253 | * this error at any time if a policy requires the PRNG to be reseeded |
| 254 | * during normal operation. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 255 | #define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 256 | |
| 257 | /** The signature, MAC or hash is incorrect. |
| 258 | * |
| 259 | * Verification functions return this error if the verification |
| 260 | * calculations completed successfully, and the value to be verified |
| 261 | * was determined to be incorrect. |
| 262 | * |
| 263 | * If the value to verify has an invalid size, implementations may return |
| 264 | * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 265 | #define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 266 | |
| 267 | /** The decrypted padding is incorrect. |
| 268 | * |
| 269 | * \warning In some protocols, when decrypting data, it is essential that |
| 270 | * the behavior of the application does not depend on whether the padding |
| 271 | * is correct, down to precise timing. Applications should prefer |
| 272 | * protocols that use authenticated encryption rather than plain |
| 273 | * encryption. If the application must perform a decryption of |
| 274 | * unauthenticated data, the application writer should take care not |
| 275 | * to reveal whether the padding is invalid. |
| 276 | * |
| 277 | * Implementations should strive to make valid and invalid padding |
| 278 | * as close as possible to indistinguishable to an external observer. |
| 279 | * In particular, the timing of a decryption operation should not |
| 280 | * depend on the validity of the padding. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 281 | #define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 282 | |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 283 | /** Return this error when there's insufficient data when attempting |
| 284 | * to read from a resource. */ |
| 285 | #define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 286 | |
Ronald Cron | cf56a0a | 2020-08-04 09:51:30 +0200 | [diff] [blame] | 287 | /** The key identifier is not valid. See also :ref:\`key-handles\`. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 288 | */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 289 | #define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 290 | |
gabor-mezei-arm | 3d8b4f5 | 2020-11-09 16:36:46 +0100 | [diff] [blame] | 291 | /** Stored data has been corrupted. |
| 292 | * |
| 293 | * This error indicates that some persistent storage has suffered corruption. |
| 294 | * It does not indicate the following situations, which have specific error |
| 295 | * codes: |
| 296 | * |
| 297 | * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED. |
| 298 | * - A communication error between the cryptoprocessor and its external |
| 299 | * storage - use #PSA_ERROR_COMMUNICATION_FAILURE. |
| 300 | * - When the storage is in a valid state but is full - use |
| 301 | * #PSA_ERROR_INSUFFICIENT_STORAGE. |
| 302 | * - When the storage fails for other reasons - use |
| 303 | * #PSA_ERROR_STORAGE_FAILURE. |
| 304 | * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID. |
| 305 | * |
| 306 | * \note A storage corruption does not indicate that any data that was |
| 307 | * previously read is invalid. However this previously read data might no |
| 308 | * longer be readable from storage. |
| 309 | * |
| 310 | * When a storage failure occurs, it is no longer possible to ensure the |
| 311 | * global integrity of the keystore. |
| 312 | */ |
| 313 | #define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152) |
| 314 | |
gabor-mezei-arm | fe30924 | 2020-11-09 17:39:56 +0100 | [diff] [blame] | 315 | /** Data read from storage is not valid for the implementation. |
| 316 | * |
| 317 | * This error indicates that some data read from storage does not have a valid |
| 318 | * format. It does not indicate the following situations, which have specific |
| 319 | * error codes: |
| 320 | * |
| 321 | * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT |
| 322 | * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE |
| 323 | * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT |
| 324 | * |
| 325 | * This error is typically a result of either storage corruption on a |
| 326 | * cleartext storage backend, or an attempt to read data that was |
| 327 | * written by an incompatible version of the library. |
| 328 | */ |
| 329 | #define PSA_ERROR_DATA_INVALID ((psa_status_t)-153) |
| 330 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 331 | /**@}*/ |
| 332 | |
| 333 | /** \defgroup crypto_types Key and algorithm types |
| 334 | * @{ |
| 335 | */ |
| 336 | |
Gilles Peskine | 7973399 | 2022-06-20 18:41:20 +0200 | [diff] [blame] | 337 | /* Note that key type values, including ECC family and DH group values, are |
| 338 | * embedded in the persistent key store, as part of key metadata. As a |
| 339 | * consequence, they must not be changed (unless the storage format version |
| 340 | * changes). |
| 341 | */ |
| 342 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 343 | /** An invalid key type value. |
| 344 | * |
| 345 | * Zero is not the encoding of any key type. |
| 346 | */ |
Gilles Peskine | f65ed6f | 2019-12-04 17:18:41 +0100 | [diff] [blame] | 347 | #define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 348 | |
Andrew Thoelke | dd49cf9 | 2019-09-24 13:11:49 +0100 | [diff] [blame] | 349 | /** Vendor-defined key type flag. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 350 | * |
| 351 | * Key types defined by this standard will never have the |
| 352 | * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types |
| 353 | * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should |
| 354 | * respect the bitwise structure used by standard encodings whenever practical. |
| 355 | */ |
Gilles Peskine | f65ed6f | 2019-12-04 17:18:41 +0100 | [diff] [blame] | 356 | #define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 357 | |
Gilles Peskine | f65ed6f | 2019-12-04 17:18:41 +0100 | [diff] [blame] | 358 | #define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000) |
Gilles Peskine | 7cfcb3f | 2019-12-04 18:58:44 +0100 | [diff] [blame] | 359 | #define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000) |
| 360 | #define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000) |
| 361 | #define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000) |
Gilles Peskine | f65ed6f | 2019-12-04 17:18:41 +0100 | [diff] [blame] | 362 | #define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 363 | |
Gilles Peskine | 7cfcb3f | 2019-12-04 18:58:44 +0100 | [diff] [blame] | 364 | #define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 365 | |
Andrew Thoelke | dd49cf9 | 2019-09-24 13:11:49 +0100 | [diff] [blame] | 366 | /** Whether a key type is vendor-defined. |
| 367 | * |
| 368 | * See also #PSA_KEY_TYPE_VENDOR_FLAG. |
| 369 | */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 370 | #define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \ |
| 371 | (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0) |
| 372 | |
| 373 | /** Whether a key type is an unstructured array of bytes. |
| 374 | * |
| 375 | * This encompasses both symmetric keys and non-key data. |
| 376 | */ |
| 377 | #define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \ |
Gilles Peskine | 7cfcb3f | 2019-12-04 18:58:44 +0100 | [diff] [blame] | 378 | (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \ |
| 379 | ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 380 | |
| 381 | /** Whether a key type is asymmetric: either a key pair or a public key. */ |
| 382 | #define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \ |
| 383 | (((type) & PSA_KEY_TYPE_CATEGORY_MASK \ |
| 384 | & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \ |
| 385 | PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY) |
| 386 | /** Whether a key type is the public part of a key pair. */ |
| 387 | #define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \ |
| 388 | (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY) |
| 389 | /** Whether a key type is a key pair containing a private part and a public |
| 390 | * part. */ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 391 | #define PSA_KEY_TYPE_IS_KEY_PAIR(type) \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 392 | (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR) |
| 393 | /** The key pair type corresponding to a public key type. |
| 394 | * |
| 395 | * You may also pass a key pair type as \p type, it will be left unchanged. |
| 396 | * |
| 397 | * \param type A public key type or key pair type. |
| 398 | * |
| 399 | * \return The corresponding key pair type. |
| 400 | * If \p type is not a public key or a key pair, |
| 401 | * the return value is undefined. |
| 402 | */ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 403 | #define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 404 | ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) |
| 405 | /** The public key type corresponding to a key pair type. |
| 406 | * |
| 407 | * You may also pass a key pair type as \p type, it will be left unchanged. |
| 408 | * |
| 409 | * \param type A public key type or key pair type. |
| 410 | * |
| 411 | * \return The corresponding public key type. |
| 412 | * If \p type is not a public key or a key pair, |
| 413 | * the return value is undefined. |
| 414 | */ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 415 | #define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 416 | ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) |
| 417 | |
| 418 | /** Raw data. |
| 419 | * |
| 420 | * A "key" of this type cannot be used for any cryptographic operation. |
| 421 | * Applications may use this type to store arbitrary data in the keystore. */ |
Gilles Peskine | 7cfcb3f | 2019-12-04 18:58:44 +0100 | [diff] [blame] | 422 | #define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 423 | |
| 424 | /** HMAC key. |
| 425 | * |
| 426 | * The key policy determines which underlying hash algorithm the key can be |
| 427 | * used for. |
| 428 | * |
| 429 | * HMAC keys should generally have the same size as the underlying hash. |
gabor-mezei-arm | cbcec21 | 2020-12-18 14:23:51 +0100 | [diff] [blame] | 430 | * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 431 | * \c alg is the HMAC algorithm or the underlying hash algorithm. */ |
Gilles Peskine | 7cfcb3f | 2019-12-04 18:58:44 +0100 | [diff] [blame] | 432 | #define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 433 | |
| 434 | /** A secret for key derivation. |
| 435 | * |
Manuel Pégourié-Gonnard | ffc86ce | 2021-04-30 11:37:57 +0200 | [diff] [blame] | 436 | * This key type is for high-entropy secrets only. For low-entropy secrets, |
| 437 | * #PSA_KEY_TYPE_PASSWORD should be used instead. |
| 438 | * |
| 439 | * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or |
| 440 | * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms. |
| 441 | * |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 442 | * The key policy determines which key derivation algorithm the key |
| 443 | * can be used for. |
| 444 | */ |
Gilles Peskine | 7cfcb3f | 2019-12-04 18:58:44 +0100 | [diff] [blame] | 445 | #define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 446 | |
Manuel Pégourié-Gonnard | 31cbbef | 2021-04-20 11:18:25 +0200 | [diff] [blame] | 447 | /** A low-entropy secret for password hashing or key derivation. |
| 448 | * |
Manuel Pégourié-Gonnard | ffc86ce | 2021-04-30 11:37:57 +0200 | [diff] [blame] | 449 | * This key type is suitable for passwords and passphrases which are typically |
| 450 | * intended to be memorizable by humans, and have a low entropy relative to |
| 451 | * their size. It can be used for randomly generated or derived keys with |
Manuel Pégourié-Gonnard | f9a68ad | 2021-05-07 12:11:38 +0200 | [diff] [blame] | 452 | * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable |
Manuel Pégourié-Gonnard | ffc86ce | 2021-04-30 11:37:57 +0200 | [diff] [blame] | 453 | * for such keys. It is not suitable for passwords with extremely low entropy, |
| 454 | * such as numerical PINs. |
| 455 | * |
| 456 | * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of |
| 457 | * key derivation algorithms. Algorithms that accept such an input were |
| 458 | * designed to accept low-entropy secret and are known as password hashing or |
| 459 | * key stretching algorithms. |
| 460 | * |
| 461 | * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of |
| 462 | * key derivation algorithms, as the algorithms that take such an input expect |
| 463 | * it to be high-entropy. |
| 464 | * |
| 465 | * The key policy determines which key derivation algorithm the key can be |
| 466 | * used for, among the permissible subset defined above. |
Manuel Pégourié-Gonnard | 31cbbef | 2021-04-20 11:18:25 +0200 | [diff] [blame] | 467 | */ |
Manuel Pégourié-Gonnard | c16033e | 2021-04-30 11:59:40 +0200 | [diff] [blame] | 468 | #define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203) |
Manuel Pégourié-Gonnard | 31cbbef | 2021-04-20 11:18:25 +0200 | [diff] [blame] | 469 | |
Manuel Pégourié-Gonnard | 2171e42 | 2021-05-03 10:49:54 +0200 | [diff] [blame] | 470 | /** A secret value that can be used to verify a password hash. |
| 471 | * |
| 472 | * The key policy determines which key derivation algorithm the key |
| 473 | * can be used for, among the same permissible subset as for |
| 474 | * #PSA_KEY_TYPE_PASSWORD. |
| 475 | */ |
| 476 | #define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205) |
| 477 | |
Manuel Pégourié-Gonnard | ffc86ce | 2021-04-30 11:37:57 +0200 | [diff] [blame] | 478 | /** A secret value that can be used in when computing a password hash. |
Manuel Pégourié-Gonnard | 31cbbef | 2021-04-20 11:18:25 +0200 | [diff] [blame] | 479 | * |
| 480 | * The key policy determines which key derivation algorithm the key |
Manuel Pégourié-Gonnard | ffc86ce | 2021-04-30 11:37:57 +0200 | [diff] [blame] | 481 | * can be used for, among the subset of algorithms that can use pepper. |
Manuel Pégourié-Gonnard | 31cbbef | 2021-04-20 11:18:25 +0200 | [diff] [blame] | 482 | */ |
Manuel Pégourié-Gonnard | 2171e42 | 2021-05-03 10:49:54 +0200 | [diff] [blame] | 483 | #define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206) |
Manuel Pégourié-Gonnard | 31cbbef | 2021-04-20 11:18:25 +0200 | [diff] [blame] | 484 | |
Gilles Peskine | 737c6be | 2019-05-21 16:01:06 +0200 | [diff] [blame] | 485 | /** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 486 | * |
| 487 | * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or |
| 488 | * 32 bytes (AES-256). |
| 489 | */ |
Gilles Peskine | 7cfcb3f | 2019-12-04 18:58:44 +0100 | [diff] [blame] | 490 | #define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 491 | |
Gilles Peskine | 6c12a1e | 2021-09-21 11:59:39 +0200 | [diff] [blame] | 492 | /** Key for a cipher, AEAD or MAC algorithm based on the |
| 493 | * ARIA block cipher. */ |
| 494 | #define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406) |
| 495 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 496 | /** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES). |
| 497 | * |
Gilles Peskine | 7e54a29 | 2021-03-16 18:21:34 +0100 | [diff] [blame] | 498 | * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or |
| 499 | * 192 bits (3-key 3DES). |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 500 | * |
| 501 | * Note that single DES and 2-key 3DES are weak and strongly |
| 502 | * deprecated and should only be used to decrypt legacy data. 3-key 3DES |
| 503 | * is weak and deprecated and should only be used in legacy protocols. |
| 504 | */ |
Gilles Peskine | 7cfcb3f | 2019-12-04 18:58:44 +0100 | [diff] [blame] | 505 | #define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 506 | |
Gilles Peskine | 737c6be | 2019-05-21 16:01:06 +0200 | [diff] [blame] | 507 | /** Key for a cipher, AEAD or MAC algorithm based on the |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 508 | * Camellia block cipher. */ |
Gilles Peskine | 7cfcb3f | 2019-12-04 18:58:44 +0100 | [diff] [blame] | 509 | #define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 510 | |
Gilles Peskine | 3e79c8e | 2019-05-06 15:20:04 +0200 | [diff] [blame] | 511 | /** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm. |
| 512 | * |
| 513 | * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539. |
| 514 | * |
Gilles Peskine | 14d3554 | 2022-03-10 18:36:37 +0100 | [diff] [blame] | 515 | * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports |
| 516 | * 12-byte nonces. |
| 517 | * |
| 518 | * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt |
| 519 | * with the initial counter value 1, you can process and discard a |
| 520 | * 64-byte block before the real data. |
Gilles Peskine | 3e79c8e | 2019-05-06 15:20:04 +0200 | [diff] [blame] | 521 | */ |
Gilles Peskine | 7cfcb3f | 2019-12-04 18:58:44 +0100 | [diff] [blame] | 522 | #define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004) |
Gilles Peskine | 3e79c8e | 2019-05-06 15:20:04 +0200 | [diff] [blame] | 523 | |
Gilles Peskine | 6a427bf | 2021-03-16 18:19:18 +0100 | [diff] [blame] | 524 | /** RSA public key. |
| 525 | * |
| 526 | * The size of an RSA key is the bit size of the modulus. |
| 527 | */ |
Gilles Peskine | 7cfcb3f | 2019-12-04 18:58:44 +0100 | [diff] [blame] | 528 | #define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001) |
Gilles Peskine | 6a427bf | 2021-03-16 18:19:18 +0100 | [diff] [blame] | 529 | /** RSA key pair (private and public key). |
| 530 | * |
| 531 | * The size of an RSA key is the bit size of the modulus. |
| 532 | */ |
Gilles Peskine | 7cfcb3f | 2019-12-04 18:58:44 +0100 | [diff] [blame] | 533 | #define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 534 | /** Whether a key type is an RSA key (pair or public-only). */ |
| 535 | #define PSA_KEY_TYPE_IS_RSA(type) \ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 536 | (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 537 | |
Gilles Peskine | 7cfcb3f | 2019-12-04 18:58:44 +0100 | [diff] [blame] | 538 | #define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100) |
Gilles Peskine | f65ed6f | 2019-12-04 17:18:41 +0100 | [diff] [blame] | 539 | #define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100) |
| 540 | #define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff) |
Andrew Thoelke | 214064e | 2019-09-25 22:16:21 +0100 | [diff] [blame] | 541 | /** Elliptic curve key pair. |
| 542 | * |
Gilles Peskine | 6a427bf | 2021-03-16 18:19:18 +0100 | [diff] [blame] | 543 | * The size of an elliptic curve key is the bit size associated with the curve, |
| 544 | * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*. |
| 545 | * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details. |
| 546 | * |
Paul Elliott | 8ff510a | 2020-06-02 17:19:28 +0100 | [diff] [blame] | 547 | * \param curve A value of type ::psa_ecc_family_t that |
| 548 | * identifies the ECC curve to be used. |
Andrew Thoelke | 214064e | 2019-09-25 22:16:21 +0100 | [diff] [blame] | 549 | */ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 550 | #define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \ |
| 551 | (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve)) |
Andrew Thoelke | 214064e | 2019-09-25 22:16:21 +0100 | [diff] [blame] | 552 | /** Elliptic curve public key. |
| 553 | * |
Gilles Peskine | 6a427bf | 2021-03-16 18:19:18 +0100 | [diff] [blame] | 554 | * The size of an elliptic curve public key is the same as the corresponding |
| 555 | * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of |
| 556 | * `PSA_ECC_FAMILY_xxx` curve families). |
| 557 | * |
Paul Elliott | 8ff510a | 2020-06-02 17:19:28 +0100 | [diff] [blame] | 558 | * \param curve A value of type ::psa_ecc_family_t that |
| 559 | * identifies the ECC curve to be used. |
Andrew Thoelke | 214064e | 2019-09-25 22:16:21 +0100 | [diff] [blame] | 560 | */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 561 | #define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \ |
| 562 | (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve)) |
| 563 | |
| 564 | /** Whether a key type is an elliptic curve key (pair or public-only). */ |
| 565 | #define PSA_KEY_TYPE_IS_ECC(type) \ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 566 | ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 567 | ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE) |
Gilles Peskine | 5e9c9cc | 2018-12-12 14:02:48 +0100 | [diff] [blame] | 568 | /** Whether a key type is an elliptic curve key pair. */ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 569 | #define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 570 | (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 571 | PSA_KEY_TYPE_ECC_KEY_PAIR_BASE) |
Gilles Peskine | 5e9c9cc | 2018-12-12 14:02:48 +0100 | [diff] [blame] | 572 | /** Whether a key type is an elliptic curve public key. */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 573 | #define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \ |
| 574 | (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \ |
| 575 | PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE) |
| 576 | |
| 577 | /** Extract the curve from an elliptic curve key type. */ |
Paul Elliott | 8ff510a | 2020-06-02 17:19:28 +0100 | [diff] [blame] | 578 | #define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \ |
| 579 | ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 580 | ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \ |
| 581 | 0)) |
| 582 | |
Przemyslaw Stekiel | 6d3d18b | 2022-01-20 22:41:17 +0100 | [diff] [blame] | 583 | /** Check if the curve of given family is Weierstrass elliptic curve. */ |
| 584 | #define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0) |
| 585 | |
Gilles Peskine | 228abc5 | 2019-12-03 17:24:19 +0100 | [diff] [blame] | 586 | /** SEC Koblitz curves over prime fields. |
| 587 | * |
| 588 | * This family comprises the following curves: |
| 589 | * secp192k1, secp224k1, secp256k1. |
| 590 | * They are defined in _Standards for Efficient Cryptography_, |
| 591 | * _SEC 2: Recommended Elliptic Curve Domain Parameters_. |
| 592 | * https://www.secg.org/sec2-v2.pdf |
| 593 | */ |
Paul Elliott | 8ff510a | 2020-06-02 17:19:28 +0100 | [diff] [blame] | 594 | #define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17) |
Gilles Peskine | 228abc5 | 2019-12-03 17:24:19 +0100 | [diff] [blame] | 595 | |
| 596 | /** SEC random curves over prime fields. |
| 597 | * |
| 598 | * This family comprises the following curves: |
| 599 | * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1. |
| 600 | * They are defined in _Standards for Efficient Cryptography_, |
| 601 | * _SEC 2: Recommended Elliptic Curve Domain Parameters_. |
| 602 | * https://www.secg.org/sec2-v2.pdf |
| 603 | */ |
Paul Elliott | 8ff510a | 2020-06-02 17:19:28 +0100 | [diff] [blame] | 604 | #define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12) |
Gilles Peskine | 228abc5 | 2019-12-03 17:24:19 +0100 | [diff] [blame] | 605 | /* SECP160R2 (SEC2 v1, obsolete) */ |
Paul Elliott | 8ff510a | 2020-06-02 17:19:28 +0100 | [diff] [blame] | 606 | #define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b) |
Gilles Peskine | 228abc5 | 2019-12-03 17:24:19 +0100 | [diff] [blame] | 607 | |
| 608 | /** SEC Koblitz curves over binary fields. |
| 609 | * |
| 610 | * This family comprises the following curves: |
| 611 | * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1. |
| 612 | * They are defined in _Standards for Efficient Cryptography_, |
| 613 | * _SEC 2: Recommended Elliptic Curve Domain Parameters_. |
| 614 | * https://www.secg.org/sec2-v2.pdf |
| 615 | */ |
Paul Elliott | 8ff510a | 2020-06-02 17:19:28 +0100 | [diff] [blame] | 616 | #define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27) |
Gilles Peskine | 228abc5 | 2019-12-03 17:24:19 +0100 | [diff] [blame] | 617 | |
| 618 | /** SEC random curves over binary fields. |
| 619 | * |
| 620 | * This family comprises the following curves: |
| 621 | * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1. |
| 622 | * They are defined in _Standards for Efficient Cryptography_, |
| 623 | * _SEC 2: Recommended Elliptic Curve Domain Parameters_. |
| 624 | * https://www.secg.org/sec2-v2.pdf |
| 625 | */ |
Paul Elliott | 8ff510a | 2020-06-02 17:19:28 +0100 | [diff] [blame] | 626 | #define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22) |
Gilles Peskine | 228abc5 | 2019-12-03 17:24:19 +0100 | [diff] [blame] | 627 | |
| 628 | /** SEC additional random curves over binary fields. |
| 629 | * |
| 630 | * This family comprises the following curve: |
| 631 | * sect163r2. |
| 632 | * It is defined in _Standards for Efficient Cryptography_, |
| 633 | * _SEC 2: Recommended Elliptic Curve Domain Parameters_. |
| 634 | * https://www.secg.org/sec2-v2.pdf |
| 635 | */ |
Paul Elliott | 8ff510a | 2020-06-02 17:19:28 +0100 | [diff] [blame] | 636 | #define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b) |
Gilles Peskine | 228abc5 | 2019-12-03 17:24:19 +0100 | [diff] [blame] | 637 | |
| 638 | /** Brainpool P random curves. |
| 639 | * |
| 640 | * This family comprises the following curves: |
| 641 | * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1, |
| 642 | * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1. |
| 643 | * It is defined in RFC 5639. |
| 644 | */ |
Paul Elliott | 8ff510a | 2020-06-02 17:19:28 +0100 | [diff] [blame] | 645 | #define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30) |
Gilles Peskine | 228abc5 | 2019-12-03 17:24:19 +0100 | [diff] [blame] | 646 | |
| 647 | /** Curve25519 and Curve448. |
| 648 | * |
| 649 | * This family comprises the following Montgomery curves: |
| 650 | * - 255-bit: Bernstein et al., |
| 651 | * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006. |
| 652 | * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve. |
| 653 | * - 448-bit: Hamburg, |
| 654 | * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015. |
| 655 | * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve. |
| 656 | */ |
Paul Elliott | 8ff510a | 2020-06-02 17:19:28 +0100 | [diff] [blame] | 657 | #define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41) |
Gilles Peskine | 228abc5 | 2019-12-03 17:24:19 +0100 | [diff] [blame] | 658 | |
Gilles Peskine | 6754680 | 2021-02-24 21:49:40 +0100 | [diff] [blame] | 659 | /** The twisted Edwards curves Ed25519 and Ed448. |
| 660 | * |
Gilles Peskine | 3a1101a | 2021-02-24 21:52:21 +0100 | [diff] [blame] | 661 | * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves, |
Gilles Peskine | a00abc6 | 2021-03-16 18:25:14 +0100 | [diff] [blame] | 662 | * #PSA_ALG_ED25519PH for the 255-bit curve, |
Gilles Peskine | 3a1101a | 2021-02-24 21:52:21 +0100 | [diff] [blame] | 663 | * #PSA_ALG_ED448PH for the 448-bit curve). |
Gilles Peskine | 6754680 | 2021-02-24 21:49:40 +0100 | [diff] [blame] | 664 | * |
| 665 | * This family comprises the following twisted Edwards curves: |
Gilles Peskine | a00abc6 | 2021-03-16 18:25:14 +0100 | [diff] [blame] | 666 | * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent |
Gilles Peskine | 6754680 | 2021-02-24 21:49:40 +0100 | [diff] [blame] | 667 | * to Curve25519. |
| 668 | * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008. |
| 669 | * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent |
| 670 | * to Curve448. |
| 671 | * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015. |
| 672 | */ |
| 673 | #define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42) |
| 674 | |
Gilles Peskine | 7cfcb3f | 2019-12-04 18:58:44 +0100 | [diff] [blame] | 675 | #define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200) |
Gilles Peskine | f65ed6f | 2019-12-04 17:18:41 +0100 | [diff] [blame] | 676 | #define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200) |
| 677 | #define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff) |
Andrew Thoelke | 214064e | 2019-09-25 22:16:21 +0100 | [diff] [blame] | 678 | /** Diffie-Hellman key pair. |
| 679 | * |
Paul Elliott | 75e2703 | 2020-06-03 15:17:39 +0100 | [diff] [blame] | 680 | * \param group A value of type ::psa_dh_family_t that identifies the |
Andrew Thoelke | 214064e | 2019-09-25 22:16:21 +0100 | [diff] [blame] | 681 | * Diffie-Hellman group to be used. |
| 682 | */ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 683 | #define PSA_KEY_TYPE_DH_KEY_PAIR(group) \ |
| 684 | (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group)) |
Andrew Thoelke | 214064e | 2019-09-25 22:16:21 +0100 | [diff] [blame] | 685 | /** Diffie-Hellman public key. |
| 686 | * |
Paul Elliott | 75e2703 | 2020-06-03 15:17:39 +0100 | [diff] [blame] | 687 | * \param group A value of type ::psa_dh_family_t that identifies the |
Andrew Thoelke | 214064e | 2019-09-25 22:16:21 +0100 | [diff] [blame] | 688 | * Diffie-Hellman group to be used. |
| 689 | */ |
Gilles Peskine | dcaefae | 2019-05-16 12:55:35 +0200 | [diff] [blame] | 690 | #define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \ |
| 691 | (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group)) |
| 692 | |
| 693 | /** Whether a key type is a Diffie-Hellman key (pair or public-only). */ |
| 694 | #define PSA_KEY_TYPE_IS_DH(type) \ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 695 | ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \ |
Gilles Peskine | dcaefae | 2019-05-16 12:55:35 +0200 | [diff] [blame] | 696 | ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE) |
| 697 | /** Whether a key type is a Diffie-Hellman key pair. */ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 698 | #define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \ |
Gilles Peskine | dcaefae | 2019-05-16 12:55:35 +0200 | [diff] [blame] | 699 | (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 700 | PSA_KEY_TYPE_DH_KEY_PAIR_BASE) |
Gilles Peskine | dcaefae | 2019-05-16 12:55:35 +0200 | [diff] [blame] | 701 | /** Whether a key type is a Diffie-Hellman public key. */ |
| 702 | #define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \ |
| 703 | (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \ |
| 704 | PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE) |
| 705 | |
| 706 | /** Extract the group from a Diffie-Hellman key type. */ |
Paul Elliott | 75e2703 | 2020-06-03 15:17:39 +0100 | [diff] [blame] | 707 | #define PSA_KEY_TYPE_DH_GET_FAMILY(type) \ |
| 708 | ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \ |
Gilles Peskine | dcaefae | 2019-05-16 12:55:35 +0200 | [diff] [blame] | 709 | ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \ |
| 710 | 0)) |
| 711 | |
Gilles Peskine | 228abc5 | 2019-12-03 17:24:19 +0100 | [diff] [blame] | 712 | /** Diffie-Hellman groups defined in RFC 7919 Appendix A. |
| 713 | * |
| 714 | * This family includes groups with the following key sizes (in bits): |
| 715 | * 2048, 3072, 4096, 6144, 8192. A given implementation may support |
| 716 | * all of these sizes or only a subset. |
| 717 | */ |
Paul Elliott | 75e2703 | 2020-06-03 15:17:39 +0100 | [diff] [blame] | 718 | #define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03) |
Gilles Peskine | 228abc5 | 2019-12-03 17:24:19 +0100 | [diff] [blame] | 719 | |
Gilles Peskine | 2eea95c | 2019-12-02 17:44:12 +0100 | [diff] [blame] | 720 | #define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \ |
Gilles Peskine | f65ed6f | 2019-12-04 17:18:41 +0100 | [diff] [blame] | 721 | (((type) >> 8) & 7) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 722 | /** The block size of a block cipher. |
| 723 | * |
| 724 | * \param type A cipher key type (value of type #psa_key_type_t). |
| 725 | * |
| 726 | * \return The block size for a block cipher, or 1 for a stream cipher. |
| 727 | * The return value is undefined if \p type is not a supported |
| 728 | * cipher key type. |
| 729 | * |
| 730 | * \note It is possible to build stream cipher algorithms on top of a block |
| 731 | * cipher, for example CTR mode (#PSA_ALG_CTR). |
| 732 | * This macro only takes the key type into account, so it cannot be |
| 733 | * used to determine the size of the data that #psa_cipher_update() |
| 734 | * might buffer for future processing in general. |
| 735 | * |
| 736 | * \note This macro returns a compile-time constant if its argument is one. |
| 737 | * |
| 738 | * \warning This macro may evaluate its argument multiple times. |
| 739 | */ |
gabor-mezei-arm | cbcec21 | 2020-12-18 14:23:51 +0100 | [diff] [blame] | 740 | #define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \ |
Gilles Peskine | 2eea95c | 2019-12-02 17:44:12 +0100 | [diff] [blame] | 741 | (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \ |
gabor-mezei-arm | cbcec21 | 2020-12-18 14:23:51 +0100 | [diff] [blame] | 742 | 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \ |
Gilles Peskine | 2eea95c | 2019-12-02 17:44:12 +0100 | [diff] [blame] | 743 | 0u) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 744 | |
Gilles Peskine | 7973399 | 2022-06-20 18:41:20 +0200 | [diff] [blame] | 745 | /* Note that algorithm values are embedded in the persistent key store, |
| 746 | * as part of key metadata. As a consequence, they must not be changed |
| 747 | * (unless the storage format version changes). |
| 748 | */ |
| 749 | |
Andrew Thoelke | dd49cf9 | 2019-09-24 13:11:49 +0100 | [diff] [blame] | 750 | /** Vendor-defined algorithm flag. |
| 751 | * |
| 752 | * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG |
| 753 | * bit set. Vendors who define additional algorithms must use an encoding with |
| 754 | * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure |
| 755 | * used by standard encodings whenever practical. |
| 756 | */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 757 | #define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000) |
Andrew Thoelke | dd49cf9 | 2019-09-24 13:11:49 +0100 | [diff] [blame] | 758 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 759 | #define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000) |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 760 | #define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000) |
| 761 | #define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 762 | #define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000) |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 763 | #define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000) |
| 764 | #define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000) |
| 765 | #define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000) |
| 766 | #define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000) |
| 767 | #define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 768 | |
Andrew Thoelke | dd49cf9 | 2019-09-24 13:11:49 +0100 | [diff] [blame] | 769 | /** Whether an algorithm is vendor-defined. |
| 770 | * |
| 771 | * See also #PSA_ALG_VENDOR_FLAG. |
| 772 | */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 773 | #define PSA_ALG_IS_VENDOR_DEFINED(alg) \ |
| 774 | (((alg) & PSA_ALG_VENDOR_FLAG) != 0) |
| 775 | |
| 776 | /** Whether the specified algorithm is a hash algorithm. |
| 777 | * |
| 778 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 779 | * |
| 780 | * \return 1 if \p alg is a hash algorithm, 0 otherwise. |
| 781 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 782 | * algorithm identifier. |
| 783 | */ |
| 784 | #define PSA_ALG_IS_HASH(alg) \ |
| 785 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH) |
| 786 | |
| 787 | /** Whether the specified algorithm is a MAC algorithm. |
| 788 | * |
| 789 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 790 | * |
| 791 | * \return 1 if \p alg is a MAC algorithm, 0 otherwise. |
| 792 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 793 | * algorithm identifier. |
| 794 | */ |
| 795 | #define PSA_ALG_IS_MAC(alg) \ |
| 796 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC) |
| 797 | |
| 798 | /** Whether the specified algorithm is a symmetric cipher algorithm. |
| 799 | * |
| 800 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 801 | * |
| 802 | * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise. |
| 803 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 804 | * algorithm identifier. |
| 805 | */ |
| 806 | #define PSA_ALG_IS_CIPHER(alg) \ |
| 807 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER) |
| 808 | |
| 809 | /** Whether the specified algorithm is an authenticated encryption |
| 810 | * with associated data (AEAD) algorithm. |
| 811 | * |
| 812 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 813 | * |
| 814 | * \return 1 if \p alg is an AEAD algorithm, 0 otherwise. |
| 815 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 816 | * algorithm identifier. |
| 817 | */ |
| 818 | #define PSA_ALG_IS_AEAD(alg) \ |
| 819 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD) |
| 820 | |
Gilles Peskine | 4eb05a4 | 2020-05-26 17:07:16 +0200 | [diff] [blame] | 821 | /** Whether the specified algorithm is an asymmetric signature algorithm, |
Gilles Peskine | 6cc0a20 | 2020-05-05 16:05:26 +0200 | [diff] [blame] | 822 | * also known as public-key signature algorithm. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 823 | * |
| 824 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 825 | * |
Gilles Peskine | 6cc0a20 | 2020-05-05 16:05:26 +0200 | [diff] [blame] | 826 | * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 827 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 828 | * algorithm identifier. |
| 829 | */ |
| 830 | #define PSA_ALG_IS_SIGN(alg) \ |
| 831 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN) |
| 832 | |
Gilles Peskine | 6cc0a20 | 2020-05-05 16:05:26 +0200 | [diff] [blame] | 833 | /** Whether the specified algorithm is an asymmetric encryption algorithm, |
| 834 | * also known as public-key encryption algorithm. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 835 | * |
| 836 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 837 | * |
Gilles Peskine | 6cc0a20 | 2020-05-05 16:05:26 +0200 | [diff] [blame] | 838 | * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 839 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 840 | * algorithm identifier. |
| 841 | */ |
| 842 | #define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \ |
| 843 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION) |
| 844 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 845 | /** Whether the specified algorithm is a key agreement algorithm. |
| 846 | * |
| 847 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 848 | * |
| 849 | * \return 1 if \p alg is a key agreement algorithm, 0 otherwise. |
| 850 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 851 | * algorithm identifier. |
| 852 | */ |
| 853 | #define PSA_ALG_IS_KEY_AGREEMENT(alg) \ |
Gilles Peskine | 47e79fb | 2019-02-08 11:24:59 +0100 | [diff] [blame] | 854 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 855 | |
| 856 | /** Whether the specified algorithm is a key derivation algorithm. |
| 857 | * |
| 858 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 859 | * |
| 860 | * \return 1 if \p alg is a key derivation algorithm, 0 otherwise. |
| 861 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 862 | * algorithm identifier. |
| 863 | */ |
| 864 | #define PSA_ALG_IS_KEY_DERIVATION(alg) \ |
| 865 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION) |
| 866 | |
Manuel Pégourié-Gonnard | 234b1ec | 2021-04-20 13:07:21 +0200 | [diff] [blame] | 867 | /** Whether the specified algorithm is a key stretching / password hashing |
| 868 | * algorithm. |
| 869 | * |
| 870 | * A key stretching / password hashing algorithm is a key derivation algorithm |
Manuel Pégourié-Gonnard | ffc86ce | 2021-04-30 11:37:57 +0200 | [diff] [blame] | 871 | * that is suitable for use with a low-entropy secret such as a password. |
| 872 | * Equivalently, it's a key derivation algorithm that uses a |
| 873 | * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step. |
Manuel Pégourié-Gonnard | 234b1ec | 2021-04-20 13:07:21 +0200 | [diff] [blame] | 874 | * |
| 875 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 876 | * |
Andrew Thoelke | a0f4b59 | 2021-06-24 16:47:14 +0100 | [diff] [blame] | 877 | * \return 1 if \p alg is a key stretching / password hashing algorithm, 0 |
Manuel Pégourié-Gonnard | 234b1ec | 2021-04-20 13:07:21 +0200 | [diff] [blame] | 878 | * otherwise. This macro may return either 0 or 1 if \p alg is not a |
| 879 | * supported algorithm identifier. |
| 880 | */ |
| 881 | #define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \ |
| 882 | (PSA_ALG_IS_KEY_DERIVATION(alg) && \ |
| 883 | (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG) |
| 884 | |
Mateusz Starzyk | 359b5ab | 2021-08-26 12:52:56 +0200 | [diff] [blame] | 885 | /** An invalid algorithm identifier value. */ |
| 886 | #define PSA_ALG_NONE ((psa_algorithm_t)0) |
| 887 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 888 | #define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff) |
Adrian L. Shaw | 21e7145 | 2019-09-20 16:01:11 +0100 | [diff] [blame] | 889 | /** MD5 */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 890 | #define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003) |
Adrian L. Shaw | 21e7145 | 2019-09-20 16:01:11 +0100 | [diff] [blame] | 891 | /** PSA_ALG_RIPEMD160 */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 892 | #define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004) |
Adrian L. Shaw | 21e7145 | 2019-09-20 16:01:11 +0100 | [diff] [blame] | 893 | /** SHA1 */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 894 | #define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 895 | /** SHA2-224 */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 896 | #define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 897 | /** SHA2-256 */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 898 | #define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 899 | /** SHA2-384 */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 900 | #define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 901 | /** SHA2-512 */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 902 | #define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 903 | /** SHA2-512/224 */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 904 | #define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 905 | /** SHA2-512/256 */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 906 | #define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 907 | /** SHA3-224 */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 908 | #define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 909 | /** SHA3-256 */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 910 | #define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 911 | /** SHA3-384 */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 912 | #define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 913 | /** SHA3-512 */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 914 | #define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013) |
Gilles Peskine | 2735469 | 2021-03-03 17:45:06 +0100 | [diff] [blame] | 915 | /** The first 512 bits (64 bytes) of the SHAKE256 output. |
Gilles Peskine | 3a1101a | 2021-02-24 21:52:21 +0100 | [diff] [blame] | 916 | * |
| 917 | * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other |
| 918 | * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512 |
| 919 | * has the same output size and a (theoretically) higher security strength. |
| 920 | */ |
Gilles Peskine | 2735469 | 2021-03-03 17:45:06 +0100 | [diff] [blame] | 921 | #define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 922 | |
Gilles Peskine | 763fb9a | 2019-01-28 13:29:01 +0100 | [diff] [blame] | 923 | /** In a hash-and-sign algorithm policy, allow any hash algorithm. |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 924 | * |
Gilles Peskine | 763fb9a | 2019-01-28 13:29:01 +0100 | [diff] [blame] | 925 | * This value may be used to form the algorithm usage field of a policy |
| 926 | * for a signature algorithm that is parametrized by a hash. The key |
| 927 | * may then be used to perform operations using the same signature |
| 928 | * algorithm parametrized with any supported hash. |
| 929 | * |
| 930 | * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros: |
Gilles Peskine | acd2d0e | 2021-10-04 18:10:38 +0200 | [diff] [blame] | 931 | * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT, |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 932 | * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA. |
Gilles Peskine | 763fb9a | 2019-01-28 13:29:01 +0100 | [diff] [blame] | 933 | * Then you may create and use a key as follows: |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 934 | * - Set the key usage field using #PSA_ALG_ANY_HASH, for example: |
| 935 | * ``` |
Gilles Peskine | 89d8c5c | 2019-11-26 17:01:59 +0100 | [diff] [blame] | 936 | * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY |
Gilles Peskine | 80b39ae | 2019-05-15 16:09:46 +0200 | [diff] [blame] | 937 | * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH)); |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 938 | * ``` |
| 939 | * - Import or generate key material. |
Gilles Peskine | 89d8c5c | 2019-11-26 17:01:59 +0100 | [diff] [blame] | 940 | * - Call psa_sign_hash() or psa_verify_hash(), passing |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 941 | * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each |
| 942 | * call to sign or verify a message may use a different hash. |
| 943 | * ``` |
Ronald Cron | cf56a0a | 2020-08-04 09:51:30 +0200 | [diff] [blame] | 944 | * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...); |
| 945 | * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...); |
| 946 | * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...); |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 947 | * ``` |
| 948 | * |
| 949 | * This value may not be used to build other algorithms that are |
| 950 | * parametrized over a hash. For any valid use of this macro to build |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 951 | * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true. |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 952 | * |
| 953 | * This value may not be used to build an algorithm specification to |
| 954 | * perform an operation. It is only valid to build policies. |
| 955 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 956 | #define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff) |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 957 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 958 | #define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000) |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 959 | #define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 960 | /** Macro to build an HMAC algorithm. |
| 961 | * |
| 962 | * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256. |
| 963 | * |
| 964 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 965 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 966 | * |
| 967 | * \return The corresponding HMAC algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 968 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 969 | * hash algorithm. |
| 970 | */ |
| 971 | #define PSA_ALG_HMAC(hash_alg) \ |
| 972 | (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 973 | |
| 974 | #define PSA_ALG_HMAC_GET_HASH(hmac_alg) \ |
| 975 | (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK)) |
| 976 | |
| 977 | /** Whether the specified algorithm is an HMAC algorithm. |
| 978 | * |
| 979 | * HMAC is a family of MAC algorithms that are based on a hash function. |
| 980 | * |
| 981 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 982 | * |
| 983 | * \return 1 if \p alg is an HMAC algorithm, 0 otherwise. |
| 984 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 985 | * algorithm identifier. |
| 986 | */ |
| 987 | #define PSA_ALG_IS_HMAC(alg) \ |
| 988 | (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ |
| 989 | PSA_ALG_HMAC_BASE) |
| 990 | |
| 991 | /* In the encoding of a MAC algorithm, the bits corresponding to |
| 992 | * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is |
| 993 | * truncated. As an exception, the value 0 means the untruncated algorithm, |
| 994 | * whatever its length is. The length is encoded in 6 bits, so it can |
| 995 | * reach up to 63; the largest MAC is 64 bytes so its trivial truncation |
| 996 | * to full length is correctly encoded as 0 and any non-trivial truncation |
| 997 | * is correctly encoded as a value between 1 and 63. */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 998 | #define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000) |
| 999 | #define PSA_MAC_TRUNCATION_OFFSET 16 |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1000 | |
Steven Cooreman | d927ed7 | 2021-02-22 19:59:35 +0100 | [diff] [blame] | 1001 | /* In the encoding of a MAC algorithm, the bit corresponding to |
| 1002 | * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm |
Steven Cooreman | 328f11c | 2021-03-02 11:44:51 +0100 | [diff] [blame] | 1003 | * is a wildcard algorithm. A key with such wildcard algorithm as permitted |
| 1004 | * algorithm policy can be used with any algorithm corresponding to the |
Steven Cooreman | d927ed7 | 2021-02-22 19:59:35 +0100 | [diff] [blame] | 1005 | * same base class and having a (potentially truncated) MAC length greater or |
| 1006 | * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */ |
| 1007 | #define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000) |
| 1008 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1009 | /** Macro to build a truncated MAC algorithm. |
| 1010 | * |
| 1011 | * A truncated MAC algorithm is identical to the corresponding MAC |
| 1012 | * algorithm except that the MAC value for the truncated algorithm |
| 1013 | * consists of only the first \p mac_length bytes of the MAC value |
| 1014 | * for the untruncated algorithm. |
| 1015 | * |
| 1016 | * \note This macro may allow constructing algorithm identifiers that |
| 1017 | * are not valid, either because the specified length is larger |
| 1018 | * than the untruncated MAC or because the specified length is |
| 1019 | * smaller than permitted by the implementation. |
| 1020 | * |
| 1021 | * \note It is implementation-defined whether a truncated MAC that |
| 1022 | * is truncated to the same length as the MAC of the untruncated |
| 1023 | * algorithm is considered identical to the untruncated algorithm |
| 1024 | * for policy comparison purposes. |
| 1025 | * |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 1026 | * \param mac_alg A MAC algorithm identifier (value of type |
Gilles Peskine | 7ef23be | 2021-03-08 17:19:47 +0100 | [diff] [blame] | 1027 | * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1028 | * is true). This may be a truncated or untruncated |
| 1029 | * MAC algorithm. |
| 1030 | * \param mac_length Desired length of the truncated MAC in bytes. |
| 1031 | * This must be at most the full length of the MAC |
| 1032 | * and must be at least an implementation-specified |
| 1033 | * minimum. The implementation-specified minimum |
| 1034 | * shall not be zero. |
| 1035 | * |
| 1036 | * \return The corresponding MAC algorithm with the specified |
| 1037 | * length. |
Gilles Peskine | 7ef23be | 2021-03-08 17:19:47 +0100 | [diff] [blame] | 1038 | * \return Unspecified if \p mac_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1039 | * MAC algorithm or if \p mac_length is too small or |
| 1040 | * too large for the specified MAC algorithm. |
| 1041 | */ |
Steven Cooreman | 328f11c | 2021-03-02 11:44:51 +0100 | [diff] [blame] | 1042 | #define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \ |
| 1043 | (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \ |
| 1044 | PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1045 | ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK)) |
| 1046 | |
| 1047 | /** Macro to build the base MAC algorithm corresponding to a truncated |
| 1048 | * MAC algorithm. |
| 1049 | * |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 1050 | * \param mac_alg A MAC algorithm identifier (value of type |
Gilles Peskine | 7ef23be | 2021-03-08 17:19:47 +0100 | [diff] [blame] | 1051 | * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1052 | * is true). This may be a truncated or untruncated |
| 1053 | * MAC algorithm. |
| 1054 | * |
| 1055 | * \return The corresponding base MAC algorithm. |
Gilles Peskine | 7ef23be | 2021-03-08 17:19:47 +0100 | [diff] [blame] | 1056 | * \return Unspecified if \p mac_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1057 | * MAC algorithm. |
| 1058 | */ |
Steven Cooreman | 328f11c | 2021-03-02 11:44:51 +0100 | [diff] [blame] | 1059 | #define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \ |
| 1060 | ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \ |
| 1061 | PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1062 | |
| 1063 | /** Length to which a MAC algorithm is truncated. |
| 1064 | * |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 1065 | * \param mac_alg A MAC algorithm identifier (value of type |
Gilles Peskine | 7ef23be | 2021-03-08 17:19:47 +0100 | [diff] [blame] | 1066 | * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1067 | * is true). |
| 1068 | * |
| 1069 | * \return Length of the truncated MAC in bytes. |
Gilles Peskine | 7ef23be | 2021-03-08 17:19:47 +0100 | [diff] [blame] | 1070 | * \return 0 if \p mac_alg is a non-truncated MAC algorithm. |
| 1071 | * \return Unspecified if \p mac_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1072 | * MAC algorithm. |
| 1073 | */ |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 1074 | #define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \ |
| 1075 | (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1076 | |
Steven Cooreman | ee18b1f | 2021-02-08 11:44:21 +0100 | [diff] [blame] | 1077 | /** Macro to build a MAC minimum-MAC-length wildcard algorithm. |
Steven Cooreman | b3ce815 | 2021-02-18 12:03:50 +0100 | [diff] [blame] | 1078 | * |
Steven Cooreman | a1d8322 | 2021-02-25 10:20:29 +0100 | [diff] [blame] | 1079 | * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms |
Steven Cooreman | ee18b1f | 2021-02-08 11:44:21 +0100 | [diff] [blame] | 1080 | * sharing the same base algorithm, and where the (potentially truncated) MAC |
| 1081 | * length of the specific algorithm is equal to or larger then the wildcard |
| 1082 | * algorithm's minimum MAC length. |
Steven Cooreman | b3ce815 | 2021-02-18 12:03:50 +0100 | [diff] [blame] | 1083 | * |
Steven Cooreman | 37389c7 | 2021-02-18 12:08:41 +0100 | [diff] [blame] | 1084 | * \note When setting the minimum required MAC length to less than the |
| 1085 | * smallest MAC length allowed by the base algorithm, this effectively |
| 1086 | * becomes an 'any-MAC-length-allowed' policy for that base algorithm. |
Steven Cooreman | b3ce815 | 2021-02-18 12:03:50 +0100 | [diff] [blame] | 1087 | * |
Steven Cooreman | 37389c7 | 2021-02-18 12:08:41 +0100 | [diff] [blame] | 1088 | * \param mac_alg A MAC algorithm identifier (value of type |
| 1089 | * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg) |
| 1090 | * is true). |
| 1091 | * \param min_mac_length Desired minimum length of the message authentication |
| 1092 | * code in bytes. This must be at most the untruncated |
| 1093 | * length of the MAC and must be at least 1. |
| 1094 | * |
| 1095 | * \return The corresponding MAC wildcard algorithm with the |
| 1096 | * specified minimum length. |
| 1097 | * \return Unspecified if \p mac_alg is not a supported MAC |
| 1098 | * algorithm or if \p min_mac_length is less than 1 or |
| 1099 | * too large for the specified MAC algorithm. |
Steven Cooreman | b3ce815 | 2021-02-18 12:03:50 +0100 | [diff] [blame] | 1100 | */ |
Steven Cooreman | 328f11c | 2021-03-02 11:44:51 +0100 | [diff] [blame] | 1101 | #define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \ |
| 1102 | ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \ |
| 1103 | PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) |
Steven Cooreman | b3ce815 | 2021-02-18 12:03:50 +0100 | [diff] [blame] | 1104 | |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1105 | #define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000) |
Adrian L. Shaw | fd2aed4 | 2019-07-11 15:47:40 +0100 | [diff] [blame] | 1106 | /** The CBC-MAC construction over a block cipher |
| 1107 | * |
| 1108 | * \warning CBC-MAC is insecure in many cases. |
| 1109 | * A more secure mode, such as #PSA_ALG_CMAC, is recommended. |
| 1110 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1111 | #define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100) |
Adrian L. Shaw | fd2aed4 | 2019-07-11 15:47:40 +0100 | [diff] [blame] | 1112 | /** The CMAC construction over a block cipher */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1113 | #define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1114 | |
| 1115 | /** Whether the specified algorithm is a MAC algorithm based on a block cipher. |
| 1116 | * |
| 1117 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1118 | * |
| 1119 | * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise. |
| 1120 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 1121 | * algorithm identifier. |
| 1122 | */ |
| 1123 | #define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \ |
| 1124 | (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ |
| 1125 | PSA_ALG_CIPHER_MAC_BASE) |
| 1126 | |
| 1127 | #define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000) |
| 1128 | #define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000) |
| 1129 | |
| 1130 | /** Whether the specified algorithm is a stream cipher. |
| 1131 | * |
| 1132 | * A stream cipher is a symmetric cipher that encrypts or decrypts messages |
| 1133 | * by applying a bitwise-xor with a stream of bytes that is generated |
| 1134 | * from a key. |
| 1135 | * |
| 1136 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1137 | * |
| 1138 | * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise. |
| 1139 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 1140 | * algorithm identifier or if it is not a symmetric cipher algorithm. |
| 1141 | */ |
| 1142 | #define PSA_ALG_IS_STREAM_CIPHER(alg) \ |
| 1143 | (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \ |
| 1144 | (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG)) |
| 1145 | |
Bence Szépkúti | 1de907d | 2020-12-07 18:20:28 +0100 | [diff] [blame] | 1146 | /** The stream cipher mode of a stream cipher algorithm. |
| 1147 | * |
| 1148 | * The underlying stream cipher is determined by the key type. |
Bence Szépkúti | 99ffb2b | 2020-12-08 00:08:31 +0100 | [diff] [blame] | 1149 | * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1150 | */ |
Bence Szépkúti | 1de907d | 2020-12-07 18:20:28 +0100 | [diff] [blame] | 1151 | #define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100) |
Gilles Peskine | 3e79c8e | 2019-05-06 15:20:04 +0200 | [diff] [blame] | 1152 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1153 | /** The CTR stream cipher mode. |
| 1154 | * |
| 1155 | * CTR is a stream cipher which is built from a block cipher. |
| 1156 | * The underlying block cipher is determined by the key type. |
| 1157 | * For example, to use AES-128-CTR, use this algorithm with |
| 1158 | * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes). |
| 1159 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1160 | #define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1161 | |
Adrian L. Shaw | fd2aed4 | 2019-07-11 15:47:40 +0100 | [diff] [blame] | 1162 | /** The CFB stream cipher mode. |
| 1163 | * |
| 1164 | * The underlying block cipher is determined by the key type. |
| 1165 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1166 | #define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1167 | |
Adrian L. Shaw | fd2aed4 | 2019-07-11 15:47:40 +0100 | [diff] [blame] | 1168 | /** The OFB stream cipher mode. |
| 1169 | * |
| 1170 | * The underlying block cipher is determined by the key type. |
| 1171 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1172 | #define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1173 | |
| 1174 | /** The XTS cipher mode. |
| 1175 | * |
| 1176 | * XTS is a cipher mode which is built from a block cipher. It requires at |
| 1177 | * least one full block of input, but beyond this minimum the input |
| 1178 | * does not need to be a whole number of blocks. |
| 1179 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1180 | #define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1181 | |
Steven Cooreman | ed3c9ec | 2020-07-06 14:08:59 +0200 | [diff] [blame] | 1182 | /** The Electronic Code Book (ECB) mode of a block cipher, with no padding. |
| 1183 | * |
Steven Cooreman | a6033e9 | 2020-08-25 11:47:50 +0200 | [diff] [blame] | 1184 | * \warning ECB mode does not protect the confidentiality of the encrypted data |
| 1185 | * except in extremely narrow circumstances. It is recommended that applications |
| 1186 | * only use ECB if they need to construct an operating mode that the |
| 1187 | * implementation does not provide. Implementations are encouraged to provide |
| 1188 | * the modes that applications need in preference to supporting direct access |
| 1189 | * to ECB. |
| 1190 | * |
Steven Cooreman | ed3c9ec | 2020-07-06 14:08:59 +0200 | [diff] [blame] | 1191 | * The underlying block cipher is determined by the key type. |
| 1192 | * |
Steven Cooreman | a6033e9 | 2020-08-25 11:47:50 +0200 | [diff] [blame] | 1193 | * This symmetric cipher mode can only be used with messages whose lengths are a |
| 1194 | * multiple of the block size of the chosen block cipher. |
| 1195 | * |
| 1196 | * ECB mode does not accept an initialization vector (IV). When using a |
| 1197 | * multi-part cipher operation with this algorithm, psa_cipher_generate_iv() |
| 1198 | * and psa_cipher_set_iv() must not be called. |
Steven Cooreman | ed3c9ec | 2020-07-06 14:08:59 +0200 | [diff] [blame] | 1199 | */ |
| 1200 | #define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400) |
| 1201 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1202 | /** The CBC block cipher chaining mode, with no padding. |
| 1203 | * |
| 1204 | * The underlying block cipher is determined by the key type. |
| 1205 | * |
| 1206 | * This symmetric cipher mode can only be used with messages whose lengths |
| 1207 | * are whole number of blocks for the chosen block cipher. |
| 1208 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1209 | #define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1210 | |
| 1211 | /** The CBC block cipher chaining mode with PKCS#7 padding. |
| 1212 | * |
| 1213 | * The underlying block cipher is determined by the key type. |
| 1214 | * |
| 1215 | * This is the padding method defined by PKCS#7 (RFC 2315) §10.3. |
| 1216 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1217 | #define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1218 | |
Gilles Peskine | 679693e | 2019-05-06 15:10:16 +0200 | [diff] [blame] | 1219 | #define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000) |
| 1220 | |
| 1221 | /** Whether the specified algorithm is an AEAD mode on a block cipher. |
| 1222 | * |
| 1223 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1224 | * |
| 1225 | * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on |
| 1226 | * a block cipher, 0 otherwise. |
| 1227 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 1228 | * algorithm identifier. |
| 1229 | */ |
| 1230 | #define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \ |
| 1231 | (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \ |
| 1232 | (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) |
| 1233 | |
Gilles Peskine | 9153ec0 | 2019-02-15 13:02:02 +0100 | [diff] [blame] | 1234 | /** The CCM authenticated encryption algorithm. |
Adrian L. Shaw | fd2aed4 | 2019-07-11 15:47:40 +0100 | [diff] [blame] | 1235 | * |
| 1236 | * The underlying block cipher is determined by the key type. |
Gilles Peskine | 9153ec0 | 2019-02-15 13:02:02 +0100 | [diff] [blame] | 1237 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1238 | #define PSA_ALG_CCM ((psa_algorithm_t)0x05500100) |
Gilles Peskine | 9153ec0 | 2019-02-15 13:02:02 +0100 | [diff] [blame] | 1239 | |
Mateusz Starzyk | 594215b | 2021-10-14 12:23:06 +0200 | [diff] [blame] | 1240 | /** The CCM* cipher mode without authentication. |
| 1241 | * |
| 1242 | * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0. |
| 1243 | * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM. |
| 1244 | * |
| 1245 | * The underlying block cipher is determined by the key type. |
| 1246 | * |
| 1247 | * Currently only 13-byte long IV's are supported. |
| 1248 | */ |
| 1249 | #define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t)0x04c01300) |
| 1250 | |
Gilles Peskine | 9153ec0 | 2019-02-15 13:02:02 +0100 | [diff] [blame] | 1251 | /** The GCM authenticated encryption algorithm. |
Adrian L. Shaw | fd2aed4 | 2019-07-11 15:47:40 +0100 | [diff] [blame] | 1252 | * |
| 1253 | * The underlying block cipher is determined by the key type. |
Gilles Peskine | 9153ec0 | 2019-02-15 13:02:02 +0100 | [diff] [blame] | 1254 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1255 | #define PSA_ALG_GCM ((psa_algorithm_t)0x05500200) |
Gilles Peskine | 679693e | 2019-05-06 15:10:16 +0200 | [diff] [blame] | 1256 | |
| 1257 | /** The Chacha20-Poly1305 AEAD algorithm. |
| 1258 | * |
| 1259 | * The ChaCha20_Poly1305 construction is defined in RFC 7539. |
Gilles Peskine | 3e79c8e | 2019-05-06 15:20:04 +0200 | [diff] [blame] | 1260 | * |
| 1261 | * Implementations must support 12-byte nonces, may support 8-byte nonces, |
| 1262 | * and should reject other sizes. |
| 1263 | * |
| 1264 | * Implementations must support 16-byte tags and should reject other sizes. |
Gilles Peskine | 679693e | 2019-05-06 15:10:16 +0200 | [diff] [blame] | 1265 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1266 | #define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1267 | |
Tom Cosgrove | ce7f18c | 2022-07-28 05:50:56 +0100 | [diff] [blame] | 1268 | /* In the encoding of an AEAD algorithm, the bits corresponding to |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1269 | * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag. |
| 1270 | * The constants for default lengths follow this encoding. |
| 1271 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1272 | #define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000) |
| 1273 | #define PSA_AEAD_TAG_LENGTH_OFFSET 16 |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1274 | |
Steven Cooreman | d927ed7 | 2021-02-22 19:59:35 +0100 | [diff] [blame] | 1275 | /* In the encoding of an AEAD algorithm, the bit corresponding to |
| 1276 | * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm |
Steven Cooreman | 328f11c | 2021-03-02 11:44:51 +0100 | [diff] [blame] | 1277 | * is a wildcard algorithm. A key with such wildcard algorithm as permitted |
| 1278 | * algorithm policy can be used with any algorithm corresponding to the |
Steven Cooreman | d927ed7 | 2021-02-22 19:59:35 +0100 | [diff] [blame] | 1279 | * same base class and having a tag length greater than or equal to the one |
| 1280 | * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */ |
| 1281 | #define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000) |
| 1282 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1283 | /** Macro to build a shortened AEAD algorithm. |
| 1284 | * |
| 1285 | * A shortened AEAD algorithm is similar to the corresponding AEAD |
| 1286 | * algorithm, but has an authentication tag that consists of fewer bytes. |
| 1287 | * Depending on the algorithm, the tag length may affect the calculation |
| 1288 | * of the ciphertext. |
| 1289 | * |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 1290 | * \param aead_alg An AEAD algorithm identifier (value of type |
Gilles Peskine | 7ef23be | 2021-03-08 17:19:47 +0100 | [diff] [blame] | 1291 | * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1292 | * is true). |
| 1293 | * \param tag_length Desired length of the authentication tag in bytes. |
| 1294 | * |
| 1295 | * \return The corresponding AEAD algorithm with the specified |
| 1296 | * length. |
Gilles Peskine | 7ef23be | 2021-03-08 17:19:47 +0100 | [diff] [blame] | 1297 | * \return Unspecified if \p aead_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1298 | * AEAD algorithm or if \p tag_length is not valid |
| 1299 | * for the specified AEAD algorithm. |
| 1300 | */ |
Bence Szépkúti | a63b20d | 2020-12-16 11:36:46 +0100 | [diff] [blame] | 1301 | #define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \ |
Steven Cooreman | 328f11c | 2021-03-02 11:44:51 +0100 | [diff] [blame] | 1302 | (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \ |
| 1303 | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1304 | ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \ |
| 1305 | PSA_ALG_AEAD_TAG_LENGTH_MASK)) |
| 1306 | |
Steven Cooreman | b3ce815 | 2021-02-18 12:03:50 +0100 | [diff] [blame] | 1307 | /** Retrieve the tag length of a specified AEAD algorithm |
| 1308 | * |
| 1309 | * \param aead_alg An AEAD algorithm identifier (value of type |
Gilles Peskine | 7ef23be | 2021-03-08 17:19:47 +0100 | [diff] [blame] | 1310 | * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg) |
Steven Cooreman | b3ce815 | 2021-02-18 12:03:50 +0100 | [diff] [blame] | 1311 | * is true). |
| 1312 | * |
| 1313 | * \return The tag length specified by the input algorithm. |
Gilles Peskine | 7ef23be | 2021-03-08 17:19:47 +0100 | [diff] [blame] | 1314 | * \return Unspecified if \p aead_alg is not a supported |
Gilles Peskine | 8735343 | 2021-03-08 17:25:03 +0100 | [diff] [blame] | 1315 | * AEAD algorithm. |
Steven Cooreman | b3ce815 | 2021-02-18 12:03:50 +0100 | [diff] [blame] | 1316 | */ |
| 1317 | #define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \ |
| 1318 | (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \ |
| 1319 | PSA_AEAD_TAG_LENGTH_OFFSET ) |
| 1320 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1321 | /** Calculate the corresponding AEAD algorithm with the default tag length. |
| 1322 | * |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 1323 | * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that |
Gilles Peskine | 7ef23be | 2021-03-08 17:19:47 +0100 | [diff] [blame] | 1324 | * #PSA_ALG_IS_AEAD(\p aead_alg) is true). |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1325 | * |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 1326 | * \return The corresponding AEAD algorithm with the default |
| 1327 | * tag length for that algorithm. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1328 | */ |
Bence Szépkúti | a63b20d | 2020-12-16 11:36:46 +0100 | [diff] [blame] | 1329 | #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \ |
Unknown | e2e1995 | 2019-08-21 03:33:04 -0400 | [diff] [blame] | 1330 | ( \ |
Bence Szépkúti | a63b20d | 2020-12-16 11:36:46 +0100 | [diff] [blame] | 1331 | PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \ |
| 1332 | PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \ |
| 1333 | PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1334 | 0) |
Bence Szépkúti | a63b20d | 2020-12-16 11:36:46 +0100 | [diff] [blame] | 1335 | #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \ |
| 1336 | PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \ |
| 1337 | PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1338 | ref : |
| 1339 | |
Steven Cooreman | ee18b1f | 2021-02-08 11:44:21 +0100 | [diff] [blame] | 1340 | /** Macro to build an AEAD minimum-tag-length wildcard algorithm. |
Steven Cooreman | b3ce815 | 2021-02-18 12:03:50 +0100 | [diff] [blame] | 1341 | * |
Steven Cooreman | a1d8322 | 2021-02-25 10:20:29 +0100 | [diff] [blame] | 1342 | * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms |
Steven Cooreman | b3ce815 | 2021-02-18 12:03:50 +0100 | [diff] [blame] | 1343 | * sharing the same base algorithm, and where the tag length of the specific |
Steven Cooreman | ee18b1f | 2021-02-08 11:44:21 +0100 | [diff] [blame] | 1344 | * algorithm is equal to or larger then the minimum tag length specified by the |
| 1345 | * wildcard algorithm. |
Steven Cooreman | b3ce815 | 2021-02-18 12:03:50 +0100 | [diff] [blame] | 1346 | * |
Steven Cooreman | 37389c7 | 2021-02-18 12:08:41 +0100 | [diff] [blame] | 1347 | * \note When setting the minimum required tag length to less than the |
| 1348 | * smallest tag length allowed by the base algorithm, this effectively |
| 1349 | * becomes an 'any-tag-length-allowed' policy for that base algorithm. |
Steven Cooreman | b3ce815 | 2021-02-18 12:03:50 +0100 | [diff] [blame] | 1350 | * |
Steven Cooreman | 37389c7 | 2021-02-18 12:08:41 +0100 | [diff] [blame] | 1351 | * \param aead_alg An AEAD algorithm identifier (value of type |
| 1352 | * #psa_algorithm_t such that |
| 1353 | * #PSA_ALG_IS_AEAD(\p aead_alg) is true). |
| 1354 | * \param min_tag_length Desired minimum length of the authentication tag in |
| 1355 | * bytes. This must be at least 1 and at most the largest |
| 1356 | * allowed tag length of the algorithm. |
| 1357 | * |
| 1358 | * \return The corresponding AEAD wildcard algorithm with the |
| 1359 | * specified minimum length. |
| 1360 | * \return Unspecified if \p aead_alg is not a supported |
| 1361 | * AEAD algorithm or if \p min_tag_length is less than 1 |
| 1362 | * or too large for the specified AEAD algorithm. |
Steven Cooreman | b3ce815 | 2021-02-18 12:03:50 +0100 | [diff] [blame] | 1363 | */ |
Steven Cooreman | 5d81481 | 2021-02-18 12:11:39 +0100 | [diff] [blame] | 1364 | #define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \ |
Steven Cooreman | 328f11c | 2021-03-02 11:44:51 +0100 | [diff] [blame] | 1365 | ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \ |
| 1366 | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) |
Steven Cooreman | b3ce815 | 2021-02-18 12:03:50 +0100 | [diff] [blame] | 1367 | |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1368 | #define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1369 | /** RSA PKCS#1 v1.5 signature with hashing. |
| 1370 | * |
| 1371 | * This is the signature scheme defined by RFC 8017 |
| 1372 | * (PKCS#1: RSA Cryptography Specifications) under the name |
| 1373 | * RSASSA-PKCS1-v1_5. |
| 1374 | * |
| 1375 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1376 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 1377 | * This includes #PSA_ALG_ANY_HASH |
| 1378 | * when specifying the algorithm in a usage policy. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1379 | * |
| 1380 | * \return The corresponding RSA PKCS#1 v1.5 signature algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 1381 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1382 | * hash algorithm. |
| 1383 | */ |
| 1384 | #define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \ |
| 1385 | (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1386 | /** Raw PKCS#1 v1.5 signature. |
| 1387 | * |
| 1388 | * The input to this algorithm is the DigestInfo structure used by |
| 1389 | * RFC 8017 (PKCS#1: RSA Cryptography Specifications), §9.2 |
| 1390 | * steps 3–6. |
| 1391 | */ |
| 1392 | #define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE |
| 1393 | #define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \ |
| 1394 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE) |
| 1395 | |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1396 | #define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300) |
Gilles Peskine | acd2d0e | 2021-10-04 18:10:38 +0200 | [diff] [blame] | 1397 | #define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t)0x06001300) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1398 | /** RSA PSS signature with hashing. |
| 1399 | * |
| 1400 | * This is the signature scheme defined by RFC 8017 |
| 1401 | * (PKCS#1: RSA Cryptography Specifications) under the name |
| 1402 | * RSASSA-PSS, with the message generation function MGF1, and with |
Tuvshinzaya Erdenekhuu | 44baacd | 2022-06-17 10:25:05 +0100 | [diff] [blame] | 1403 | * a salt length equal to the length of the hash, or the largest |
| 1404 | * possible salt length for the algorithm and key size if that is |
| 1405 | * smaller than the hash length. The specified hash algorithm is |
| 1406 | * used to hash the input message, to create the salted hash, and |
| 1407 | * for the mask generation. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1408 | * |
| 1409 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1410 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 1411 | * This includes #PSA_ALG_ANY_HASH |
| 1412 | * when specifying the algorithm in a usage policy. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1413 | * |
| 1414 | * \return The corresponding RSA PSS signature algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 1415 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1416 | * hash algorithm. |
| 1417 | */ |
| 1418 | #define PSA_ALG_RSA_PSS(hash_alg) \ |
| 1419 | (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
Gilles Peskine | acd2d0e | 2021-10-04 18:10:38 +0200 | [diff] [blame] | 1420 | |
| 1421 | /** RSA PSS signature with hashing with relaxed verification. |
| 1422 | * |
| 1423 | * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing, |
| 1424 | * but allows an arbitrary salt length (including \c 0) when verifying a |
| 1425 | * signature. |
| 1426 | * |
| 1427 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1428 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 1429 | * This includes #PSA_ALG_ANY_HASH |
| 1430 | * when specifying the algorithm in a usage policy. |
| 1431 | * |
| 1432 | * \return The corresponding RSA PSS signature algorithm. |
| 1433 | * \return Unspecified if \p hash_alg is not a supported |
| 1434 | * hash algorithm. |
| 1435 | */ |
| 1436 | #define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \ |
| 1437 | (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1438 | |
| 1439 | /** Whether the specified algorithm is RSA PSS with standard salt. |
| 1440 | * |
| 1441 | * \param alg An algorithm value or an algorithm policy wildcard. |
| 1442 | * |
| 1443 | * \return 1 if \p alg is of the form |
| 1444 | * #PSA_ALG_RSA_PSS(\c hash_alg), |
| 1445 | * where \c hash_alg is a hash algorithm or |
| 1446 | * #PSA_ALG_ANY_HASH. 0 otherwise. |
| 1447 | * This macro may return either 0 or 1 if \p alg is not |
| 1448 | * a supported algorithm identifier or policy. |
| 1449 | */ |
| 1450 | #define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1451 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE) |
| 1452 | |
Gilles Peskine | acd2d0e | 2021-10-04 18:10:38 +0200 | [diff] [blame] | 1453 | /** Whether the specified algorithm is RSA PSS with any salt. |
| 1454 | * |
| 1455 | * \param alg An algorithm value or an algorithm policy wildcard. |
| 1456 | * |
| 1457 | * \return 1 if \p alg is of the form |
| 1458 | * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg), |
| 1459 | * where \c hash_alg is a hash algorithm or |
| 1460 | * #PSA_ALG_ANY_HASH. 0 otherwise. |
| 1461 | * This macro may return either 0 or 1 if \p alg is not |
| 1462 | * a supported algorithm identifier or policy. |
| 1463 | */ |
| 1464 | #define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \ |
| 1465 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE) |
| 1466 | |
| 1467 | /** Whether the specified algorithm is RSA PSS. |
| 1468 | * |
| 1469 | * This includes any of the RSA PSS algorithm variants, regardless of the |
| 1470 | * constraints on salt length. |
| 1471 | * |
| 1472 | * \param alg An algorithm value or an algorithm policy wildcard. |
| 1473 | * |
| 1474 | * \return 1 if \p alg is of the form |
| 1475 | * #PSA_ALG_RSA_PSS(\c hash_alg) or |
| 1476 | * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg), |
| 1477 | * where \c hash_alg is a hash algorithm or |
| 1478 | * #PSA_ALG_ANY_HASH. 0 otherwise. |
| 1479 | * This macro may return either 0 or 1 if \p alg is not |
| 1480 | * a supported algorithm identifier or policy. |
| 1481 | */ |
| 1482 | #define PSA_ALG_IS_RSA_PSS(alg) \ |
Gilles Peskine | f6892de | 2021-10-08 16:28:32 +0200 | [diff] [blame] | 1483 | (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \ |
| 1484 | PSA_ALG_IS_RSA_PSS_ANY_SALT(alg)) |
Gilles Peskine | acd2d0e | 2021-10-04 18:10:38 +0200 | [diff] [blame] | 1485 | |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1486 | #define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1487 | /** ECDSA signature with hashing. |
| 1488 | * |
| 1489 | * This is the ECDSA signature scheme defined by ANSI X9.62, |
| 1490 | * with a random per-message secret number (*k*). |
| 1491 | * |
| 1492 | * The representation of the signature as a byte string consists of |
Shaun Case | 8b0ecbc | 2021-12-20 21:14:10 -0800 | [diff] [blame] | 1493 | * the concatenation of the signature values *r* and *s*. Each of |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1494 | * *r* and *s* is encoded as an *N*-octet string, where *N* is the length |
| 1495 | * of the base point of the curve in octets. Each value is represented |
| 1496 | * in big-endian order (most significant octet first). |
| 1497 | * |
| 1498 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1499 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 1500 | * This includes #PSA_ALG_ANY_HASH |
| 1501 | * when specifying the algorithm in a usage policy. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1502 | * |
| 1503 | * \return The corresponding ECDSA signature algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 1504 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1505 | * hash algorithm. |
| 1506 | */ |
| 1507 | #define PSA_ALG_ECDSA(hash_alg) \ |
| 1508 | (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1509 | /** ECDSA signature without hashing. |
| 1510 | * |
| 1511 | * This is the same signature scheme as #PSA_ALG_ECDSA(), but |
| 1512 | * without specifying a hash algorithm. This algorithm may only be |
| 1513 | * used to sign or verify a sequence of bytes that should be an |
| 1514 | * already-calculated hash. Note that the input is padded with |
| 1515 | * zeros on the left or truncated on the left as required to fit |
| 1516 | * the curve size. |
| 1517 | */ |
| 1518 | #define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1519 | #define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1520 | /** Deterministic ECDSA signature with hashing. |
| 1521 | * |
| 1522 | * This is the deterministic ECDSA signature scheme defined by RFC 6979. |
| 1523 | * |
| 1524 | * The representation of a signature is the same as with #PSA_ALG_ECDSA(). |
| 1525 | * |
| 1526 | * Note that when this algorithm is used for verification, signatures |
| 1527 | * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the |
| 1528 | * same private key are accepted. In other words, |
| 1529 | * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from |
| 1530 | * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification. |
| 1531 | * |
| 1532 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1533 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 1534 | * This includes #PSA_ALG_ANY_HASH |
| 1535 | * when specifying the algorithm in a usage policy. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1536 | * |
| 1537 | * \return The corresponding deterministic ECDSA signature |
| 1538 | * algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 1539 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1540 | * hash algorithm. |
| 1541 | */ |
| 1542 | #define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \ |
| 1543 | (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1544 | #define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1545 | #define PSA_ALG_IS_ECDSA(alg) \ |
Gilles Peskine | 972630e | 2019-11-29 11:55:48 +0100 | [diff] [blame] | 1546 | (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1547 | PSA_ALG_ECDSA_BASE) |
| 1548 | #define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \ |
Gilles Peskine | 972630e | 2019-11-29 11:55:48 +0100 | [diff] [blame] | 1549 | (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1550 | #define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \ |
| 1551 | (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)) |
| 1552 | #define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \ |
| 1553 | (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)) |
| 1554 | |
Gilles Peskine | 3a1101a | 2021-02-24 21:52:21 +0100 | [diff] [blame] | 1555 | /** Edwards-curve digital signature algorithm without prehashing (PureEdDSA), |
| 1556 | * using standard parameters. |
| 1557 | * |
| 1558 | * Contexts are not supported in the current version of this specification |
| 1559 | * because there is no suitable signature interface that can take the |
| 1560 | * context as a parameter. A future version of this specification may add |
| 1561 | * suitable functions and extend this algorithm to support contexts. |
| 1562 | * |
| 1563 | * PureEdDSA requires an elliptic curve key on a twisted Edwards curve. |
| 1564 | * In this specification, the following curves are supported: |
| 1565 | * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified |
| 1566 | * in RFC 8032. |
| 1567 | * The curve is Edwards25519. |
| 1568 | * The hash function used internally is SHA-512. |
| 1569 | * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified |
| 1570 | * in RFC 8032. |
| 1571 | * The curve is Edwards448. |
| 1572 | * The hash function used internally is the first 114 bytes of the |
Gilles Peskine | e5fde54 | 2021-03-16 18:40:36 +0100 | [diff] [blame] | 1573 | * SHAKE256 output. |
Gilles Peskine | 3a1101a | 2021-02-24 21:52:21 +0100 | [diff] [blame] | 1574 | * |
| 1575 | * This algorithm can be used with psa_sign_message() and |
| 1576 | * psa_verify_message(). Since there is no prehashing, it cannot be used |
| 1577 | * with psa_sign_hash() or psa_verify_hash(). |
| 1578 | * |
| 1579 | * The signature format is the concatenation of R and S as defined by |
| 1580 | * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte |
| 1581 | * string for Ed448). |
| 1582 | */ |
| 1583 | #define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800) |
| 1584 | |
| 1585 | #define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900) |
| 1586 | #define PSA_ALG_IS_HASH_EDDSA(alg) \ |
| 1587 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE) |
| 1588 | |
| 1589 | /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA), |
Gilles Peskine | e36f8aa | 2021-03-01 10:20:20 +0100 | [diff] [blame] | 1590 | * using SHA-512 and the Edwards25519 curve. |
Gilles Peskine | 3a1101a | 2021-02-24 21:52:21 +0100 | [diff] [blame] | 1591 | * |
| 1592 | * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format. |
| 1593 | * |
| 1594 | * This algorithm is Ed25519 as specified in RFC 8032. |
| 1595 | * The curve is Edwards25519. |
Gilles Peskine | b13ead8 | 2021-03-01 10:28:29 +0100 | [diff] [blame] | 1596 | * The prehash is SHA-512. |
Gilles Peskine | e5fde54 | 2021-03-16 18:40:36 +0100 | [diff] [blame] | 1597 | * The hash function used internally is SHA-512. |
Gilles Peskine | b13ead8 | 2021-03-01 10:28:29 +0100 | [diff] [blame] | 1598 | * |
| 1599 | * This is a hash-and-sign algorithm: to calculate a signature, |
| 1600 | * you can either: |
| 1601 | * - call psa_sign_message() on the message; |
| 1602 | * - or calculate the SHA-512 hash of the message |
| 1603 | * with psa_hash_compute() |
| 1604 | * or with a multi-part hash operation started with psa_hash_setup(), |
| 1605 | * using the hash algorithm #PSA_ALG_SHA_512, |
| 1606 | * then sign the calculated hash with psa_sign_hash(). |
| 1607 | * Verifying a signature is similar, using psa_verify_message() or |
| 1608 | * psa_verify_hash() instead of the signature function. |
Gilles Peskine | 3a1101a | 2021-02-24 21:52:21 +0100 | [diff] [blame] | 1609 | */ |
| 1610 | #define PSA_ALG_ED25519PH \ |
| 1611 | (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK)) |
| 1612 | |
| 1613 | /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA), |
| 1614 | * using SHAKE256 and the Edwards448 curve. |
| 1615 | * |
| 1616 | * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format. |
| 1617 | * |
| 1618 | * This algorithm is Ed448 as specified in RFC 8032. |
| 1619 | * The curve is Edwards448. |
Gilles Peskine | b13ead8 | 2021-03-01 10:28:29 +0100 | [diff] [blame] | 1620 | * The prehash is the first 64 bytes of the SHAKE256 output. |
Gilles Peskine | 3a1101a | 2021-02-24 21:52:21 +0100 | [diff] [blame] | 1621 | * The hash function used internally is the first 114 bytes of the |
Gilles Peskine | e5fde54 | 2021-03-16 18:40:36 +0100 | [diff] [blame] | 1622 | * SHAKE256 output. |
Gilles Peskine | b13ead8 | 2021-03-01 10:28:29 +0100 | [diff] [blame] | 1623 | * |
| 1624 | * This is a hash-and-sign algorithm: to calculate a signature, |
| 1625 | * you can either: |
| 1626 | * - call psa_sign_message() on the message; |
| 1627 | * - or calculate the first 64 bytes of the SHAKE256 output of the message |
| 1628 | * with psa_hash_compute() |
| 1629 | * or with a multi-part hash operation started with psa_hash_setup(), |
Gilles Peskine | 2735469 | 2021-03-03 17:45:06 +0100 | [diff] [blame] | 1630 | * using the hash algorithm #PSA_ALG_SHAKE256_512, |
Gilles Peskine | b13ead8 | 2021-03-01 10:28:29 +0100 | [diff] [blame] | 1631 | * then sign the calculated hash with psa_sign_hash(). |
| 1632 | * Verifying a signature is similar, using psa_verify_message() or |
| 1633 | * psa_verify_hash() instead of the signature function. |
Gilles Peskine | 3a1101a | 2021-02-24 21:52:21 +0100 | [diff] [blame] | 1634 | */ |
| 1635 | #define PSA_ALG_ED448PH \ |
Gilles Peskine | 2735469 | 2021-03-03 17:45:06 +0100 | [diff] [blame] | 1636 | (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK)) |
Gilles Peskine | 3a1101a | 2021-02-24 21:52:21 +0100 | [diff] [blame] | 1637 | |
Gilles Peskine | 6d40085 | 2021-02-24 21:39:52 +0100 | [diff] [blame] | 1638 | /* Default definition, to be overridden if the library is extended with |
| 1639 | * more hash-and-sign algorithms that we want to keep out of this header |
| 1640 | * file. */ |
| 1641 | #define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0 |
| 1642 | |
Gilles Peskine | f2fe31a | 2021-09-22 16:42:02 +0200 | [diff] [blame] | 1643 | /** Whether the specified algorithm is a signature algorithm that can be used |
| 1644 | * with psa_sign_hash() and psa_verify_hash(). |
| 1645 | * |
| 1646 | * This encompasses all strict hash-and-sign algorithms categorized by |
| 1647 | * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the |
| 1648 | * paradigm more loosely: |
| 1649 | * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash) |
| 1650 | * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is) |
| 1651 | * |
| 1652 | * \param alg An algorithm identifier (value of type psa_algorithm_t). |
| 1653 | * |
| 1654 | * \return 1 if alg is a signature algorithm that can be used to sign a |
| 1655 | * hash. 0 if alg is a signature algorithm that can only be used |
| 1656 | * to sign a message. 0 if alg is not a signature algorithm. |
| 1657 | * This macro can return either 0 or 1 if alg is not a |
| 1658 | * supported algorithm identifier. |
| 1659 | */ |
| 1660 | #define PSA_ALG_IS_SIGN_HASH(alg) \ |
| 1661 | (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \ |
| 1662 | PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \ |
| 1663 | PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg)) |
| 1664 | |
| 1665 | /** Whether the specified algorithm is a signature algorithm that can be used |
| 1666 | * with psa_sign_message() and psa_verify_message(). |
| 1667 | * |
| 1668 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1669 | * |
| 1670 | * \return 1 if alg is a signature algorithm that can be used to sign a |
| 1671 | * message. 0 if \p alg is a signature algorithm that can only be used |
| 1672 | * to sign an already-calculated hash. 0 if \p alg is not a signature |
| 1673 | * algorithm. This macro can return either 0 or 1 if \p alg is not a |
| 1674 | * supported algorithm identifier. |
| 1675 | */ |
| 1676 | #define PSA_ALG_IS_SIGN_MESSAGE(alg) \ |
| 1677 | (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA ) |
| 1678 | |
Gilles Peskine | d35b489 | 2019-01-14 16:02:15 +0100 | [diff] [blame] | 1679 | /** Whether the specified algorithm is a hash-and-sign algorithm. |
| 1680 | * |
Gilles Peskine | 6cc0a20 | 2020-05-05 16:05:26 +0200 | [diff] [blame] | 1681 | * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms |
| 1682 | * structured in two parts: first the calculation of a hash in a way that |
| 1683 | * does not depend on the key, then the calculation of a signature from the |
Gilles Peskine | f7b4137 | 2021-09-22 16:15:05 +0200 | [diff] [blame] | 1684 | * hash value and the key. Hash-and-sign algorithms encode the hash |
| 1685 | * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH |
| 1686 | * to extract this algorithm. |
| 1687 | * |
| 1688 | * Thus, for a hash-and-sign algorithm, |
| 1689 | * `psa_sign_message(key, alg, input, ...)` is equivalent to |
| 1690 | * ``` |
| 1691 | * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...); |
| 1692 | * psa_sign_hash(key, alg, hash, ..., signature, ...); |
| 1693 | * ``` |
| 1694 | * Most usefully, separating the hash from the signature allows the hash |
| 1695 | * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update() |
| 1696 | * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to |
| 1697 | * calculating the hash and then calling psa_verify_hash(). |
Gilles Peskine | d35b489 | 2019-01-14 16:02:15 +0100 | [diff] [blame] | 1698 | * |
| 1699 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1700 | * |
| 1701 | * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise. |
| 1702 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 1703 | * algorithm identifier. |
| 1704 | */ |
| 1705 | #define PSA_ALG_IS_HASH_AND_SIGN(alg) \ |
Gilles Peskine | f7b4137 | 2021-09-22 16:15:05 +0200 | [diff] [blame] | 1706 | (PSA_ALG_IS_SIGN_HASH(alg) && \ |
| 1707 | ((alg) & PSA_ALG_HASH_MASK) != 0) |
Gilles Peskine | d35b489 | 2019-01-14 16:02:15 +0100 | [diff] [blame] | 1708 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1709 | /** Get the hash used by a hash-and-sign signature algorithm. |
| 1710 | * |
| 1711 | * A hash-and-sign algorithm is a signature algorithm which is |
| 1712 | * composed of two phases: first a hashing phase which does not use |
| 1713 | * the key and produces a hash of the input message, then a signing |
| 1714 | * phase which only uses the hash and the key and not the message |
| 1715 | * itself. |
| 1716 | * |
| 1717 | * \param alg A signature algorithm (\c PSA_ALG_XXX value such that |
| 1718 | * #PSA_ALG_IS_SIGN(\p alg) is true). |
| 1719 | * |
| 1720 | * \return The underlying hash algorithm if \p alg is a hash-and-sign |
| 1721 | * algorithm. |
| 1722 | * \return 0 if \p alg is a signature algorithm that does not |
| 1723 | * follow the hash-and-sign structure. |
| 1724 | * \return Unspecified if \p alg is not a signature algorithm or |
| 1725 | * if it is not supported by the implementation. |
| 1726 | */ |
| 1727 | #define PSA_ALG_SIGN_GET_HASH(alg) \ |
Gilles Peskine | d35b489 | 2019-01-14 16:02:15 +0100 | [diff] [blame] | 1728 | (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1729 | ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \ |
| 1730 | 0) |
| 1731 | |
| 1732 | /** RSA PKCS#1 v1.5 encryption. |
| 1733 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1734 | #define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1735 | |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1736 | #define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1737 | /** RSA OAEP encryption. |
| 1738 | * |
| 1739 | * This is the encryption scheme defined by RFC 8017 |
| 1740 | * (PKCS#1: RSA Cryptography Specifications) under the name |
| 1741 | * RSAES-OAEP, with the message generation function MGF1. |
| 1742 | * |
| 1743 | * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that |
| 1744 | * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use |
| 1745 | * for MGF1. |
| 1746 | * |
Gilles Peskine | 9ff8d1f | 2020-05-05 16:00:17 +0200 | [diff] [blame] | 1747 | * \return The corresponding RSA OAEP encryption algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 1748 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1749 | * hash algorithm. |
| 1750 | */ |
| 1751 | #define PSA_ALG_RSA_OAEP(hash_alg) \ |
| 1752 | (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1753 | #define PSA_ALG_IS_RSA_OAEP(alg) \ |
| 1754 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE) |
| 1755 | #define PSA_ALG_RSA_OAEP_GET_HASH(alg) \ |
| 1756 | (PSA_ALG_IS_RSA_OAEP(alg) ? \ |
| 1757 | ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \ |
| 1758 | 0) |
| 1759 | |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1760 | #define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1761 | /** Macro to build an HKDF algorithm. |
| 1762 | * |
| 1763 | * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256. |
| 1764 | * |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 1765 | * This key derivation algorithm uses the following inputs: |
Gilles Peskine | 03410b5 | 2019-05-16 16:05:19 +0200 | [diff] [blame] | 1766 | * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step. |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 1767 | * It is optional; if omitted, the derivation uses an empty salt. |
Gilles Peskine | 03410b5 | 2019-05-16 16:05:19 +0200 | [diff] [blame] | 1768 | * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step. |
| 1769 | * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step. |
| 1770 | * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET. |
| 1771 | * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 1772 | * starting to generate output. |
| 1773 | * |
Przemek Stekiel | 73f97d4 | 2022-06-03 09:05:08 +0200 | [diff] [blame] | 1774 | * \warning HKDF processes the salt as follows: first hash it with hash_alg |
| 1775 | * if the salt is longer than the block size of the hash algorithm; then |
| 1776 | * pad with null bytes up to the block size. As a result, it is possible |
| 1777 | * for distinct salt inputs to result in the same outputs. To ensure |
| 1778 | * unique outputs, it is recommended to use a fixed length for salt values. |
| 1779 | * |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1780 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1781 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 1782 | * |
| 1783 | * \return The corresponding HKDF algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 1784 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1785 | * hash algorithm. |
| 1786 | */ |
| 1787 | #define PSA_ALG_HKDF(hash_alg) \ |
| 1788 | (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1789 | /** Whether the specified algorithm is an HKDF algorithm. |
| 1790 | * |
| 1791 | * HKDF is a family of key derivation algorithms that are based on a hash |
| 1792 | * function and the HMAC construction. |
| 1793 | * |
| 1794 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1795 | * |
| 1796 | * \return 1 if \c alg is an HKDF algorithm, 0 otherwise. |
| 1797 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 1798 | * key derivation algorithm identifier. |
| 1799 | */ |
| 1800 | #define PSA_ALG_IS_HKDF(alg) \ |
| 1801 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE) |
| 1802 | #define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \ |
| 1803 | (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) |
| 1804 | |
Przemek Stekiel | 6b6ce32 | 2022-05-10 12:38:27 +0200 | [diff] [blame] | 1805 | #define PSA_ALG_HKDF_EXTRACT_BASE ((psa_algorithm_t)0x08000400) |
| 1806 | /** Macro to build an HKDF-Extract algorithm. |
| 1807 | * |
| 1808 | * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA256)` is |
| 1809 | * HKDF-Extract using HMAC-SHA-256. |
| 1810 | * |
| 1811 | * This key derivation algorithm uses the following inputs: |
Przemek Stekiel | b398d86 | 2022-05-18 15:43:54 +0200 | [diff] [blame] | 1812 | * - PSA_KEY_DERIVATION_INPUT_SALT is the salt. |
Przemek Stekiel | 6b6ce32 | 2022-05-10 12:38:27 +0200 | [diff] [blame] | 1813 | * - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the |
| 1814 | * "extract" step. |
Przemek Stekiel | b398d86 | 2022-05-18 15:43:54 +0200 | [diff] [blame] | 1815 | * The inputs are mandatory and must be passed in the order above. |
| 1816 | * Each input may only be passed once. |
Przemek Stekiel | 6b6ce32 | 2022-05-10 12:38:27 +0200 | [diff] [blame] | 1817 | * |
| 1818 | * \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF |
| 1819 | * should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided |
| 1820 | * as a separate algorithm for the sake of protocols that use it as a |
| 1821 | * building block. It may also be a slight performance optimization |
| 1822 | * in applications that use HKDF with the same salt and key but many |
| 1823 | * different info strings. |
| 1824 | * |
Przemek Stekiel | b398d86 | 2022-05-18 15:43:54 +0200 | [diff] [blame] | 1825 | * \warning HKDF processes the salt as follows: first hash it with hash_alg |
| 1826 | * if the salt is longer than the block size of the hash algorithm; then |
| 1827 | * pad with null bytes up to the block size. As a result, it is possible |
| 1828 | * for distinct salt inputs to result in the same outputs. To ensure |
| 1829 | * unique outputs, it is recommended to use a fixed length for salt values. |
| 1830 | * |
Przemek Stekiel | 6b6ce32 | 2022-05-10 12:38:27 +0200 | [diff] [blame] | 1831 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1832 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 1833 | * |
| 1834 | * \return The corresponding HKDF-Extract algorithm. |
| 1835 | * \return Unspecified if \p hash_alg is not a supported |
| 1836 | * hash algorithm. |
| 1837 | */ |
Przemek Stekiel | 6b6ce32 | 2022-05-10 12:38:27 +0200 | [diff] [blame] | 1838 | #define PSA_ALG_HKDF_EXTRACT(hash_alg) \ |
| 1839 | (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1840 | /** Whether the specified algorithm is an HKDF-Extract algorithm. |
| 1841 | * |
| 1842 | * HKDF-Extract is a family of key derivation algorithms that are based |
| 1843 | * on a hash function and the HMAC construction. |
| 1844 | * |
| 1845 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1846 | * |
| 1847 | * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise. |
| 1848 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 1849 | * key derivation algorithm identifier. |
| 1850 | */ |
| 1851 | #define PSA_ALG_IS_HKDF_EXTRACT(alg) \ |
| 1852 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE) |
| 1853 | |
| 1854 | #define PSA_ALG_HKDF_EXPAND_BASE ((psa_algorithm_t)0x08000500) |
| 1855 | /** Macro to build an HKDF-Expand algorithm. |
| 1856 | * |
| 1857 | * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA256)` is |
| 1858 | * HKDF-Expand using HMAC-SHA-256. |
| 1859 | * |
| 1860 | * This key derivation algorithm uses the following inputs: |
Przemek Stekiel | 459ee35 | 2022-06-02 11:16:52 +0200 | [diff] [blame] | 1861 | * - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK). |
Przemek Stekiel | 6b6ce32 | 2022-05-10 12:38:27 +0200 | [diff] [blame] | 1862 | * - PSA_KEY_DERIVATION_INPUT_INFO is the info string. |
| 1863 | * |
| 1864 | * The inputs are mandatory and must be passed in the order above. |
| 1865 | * Each input may only be passed once. |
| 1866 | * |
| 1867 | * \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF` |
| 1868 | * should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as |
| 1869 | * a separate algorithm for the sake of protocols that use it as a building |
| 1870 | * block. It may also be a slight performance optimization in applications |
| 1871 | * that use HKDF with the same salt and key but many different info strings. |
| 1872 | * |
| 1873 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1874 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 1875 | * |
| 1876 | * \return The corresponding HKDF-Expand algorithm. |
| 1877 | * \return Unspecified if \p hash_alg is not a supported |
| 1878 | * hash algorithm. |
| 1879 | */ |
| 1880 | #define PSA_ALG_HKDF_EXPAND(hash_alg) \ |
| 1881 | (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
Przemek Stekiel | ebf6281 | 2022-05-11 14:16:05 +0200 | [diff] [blame] | 1882 | /** Whether the specified algorithm is an HKDF-Expand algorithm. |
Przemek Stekiel | 6b6ce32 | 2022-05-10 12:38:27 +0200 | [diff] [blame] | 1883 | * |
| 1884 | * HKDF-Expand is a family of key derivation algorithms that are based |
| 1885 | * on a hash function and the HMAC construction. |
| 1886 | * |
| 1887 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1888 | * |
| 1889 | * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise. |
| 1890 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 1891 | * key derivation algorithm identifier. |
| 1892 | */ |
| 1893 | #define PSA_ALG_IS_HKDF_EXPAND(alg) \ |
| 1894 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE) |
| 1895 | |
Przemek Stekiel | a29b488 | 2022-06-02 11:37:03 +0200 | [diff] [blame] | 1896 | /** Whether the specified algorithm is an HKDF or HKDF-Extract or |
| 1897 | * HKDF-Expand algorithm. |
| 1898 | * |
| 1899 | * |
| 1900 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1901 | * |
| 1902 | * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise. |
| 1903 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 1904 | * key derivation algorithm identifier. |
| 1905 | */ |
| 1906 | #define PSA_ALG_IS_ANY_HKDF(alg) \ |
| 1907 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE || \ |
| 1908 | ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE || \ |
| 1909 | ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE) |
| 1910 | |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1911 | #define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1912 | /** Macro to build a TLS-1.2 PRF algorithm. |
| 1913 | * |
| 1914 | * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule, |
| 1915 | * specified in Section 5 of RFC 5246. It is based on HMAC and can be |
| 1916 | * used with either SHA-256 or SHA-384. |
| 1917 | * |
Gilles Peskine | ed87d31 | 2019-05-29 17:32:39 +0200 | [diff] [blame] | 1918 | * This key derivation algorithm uses the following inputs, which must be |
| 1919 | * passed in the order given here: |
| 1920 | * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed. |
Gilles Peskine | 2cb9e39 | 2019-05-21 15:58:13 +0200 | [diff] [blame] | 1921 | * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key. |
| 1922 | * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label. |
Gilles Peskine | 2cb9e39 | 2019-05-21 15:58:13 +0200 | [diff] [blame] | 1923 | * |
| 1924 | * For the application to TLS-1.2 key expansion, the seed is the |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1925 | * concatenation of ServerHello.Random + ClientHello.Random, |
Gilles Peskine | 2cb9e39 | 2019-05-21 15:58:13 +0200 | [diff] [blame] | 1926 | * and the label is "key expansion". |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1927 | * |
| 1928 | * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the |
| 1929 | * TLS 1.2 PRF using HMAC-SHA-256. |
| 1930 | * |
| 1931 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1932 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 1933 | * |
| 1934 | * \return The corresponding TLS-1.2 PRF algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 1935 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1936 | * hash algorithm. |
| 1937 | */ |
| 1938 | #define PSA_ALG_TLS12_PRF(hash_alg) \ |
| 1939 | (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1940 | |
| 1941 | /** Whether the specified algorithm is a TLS-1.2 PRF algorithm. |
| 1942 | * |
| 1943 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1944 | * |
| 1945 | * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise. |
| 1946 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 1947 | * key derivation algorithm identifier. |
| 1948 | */ |
| 1949 | #define PSA_ALG_IS_TLS12_PRF(alg) \ |
| 1950 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE) |
| 1951 | #define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \ |
| 1952 | (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) |
| 1953 | |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 1954 | #define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1955 | /** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm. |
| 1956 | * |
| 1957 | * In a pure-PSK handshake in TLS 1.2, the master secret is derived |
| 1958 | * from the PreSharedKey (PSK) through the application of padding |
| 1959 | * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5). |
| 1960 | * The latter is based on HMAC and can be used with either SHA-256 |
| 1961 | * or SHA-384. |
| 1962 | * |
Gilles Peskine | ed87d31 | 2019-05-29 17:32:39 +0200 | [diff] [blame] | 1963 | * This key derivation algorithm uses the following inputs, which must be |
| 1964 | * passed in the order given here: |
| 1965 | * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed. |
Przemek Stekiel | 37c81c4 | 2022-04-07 13:38:53 +0200 | [diff] [blame] | 1966 | * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the |
| 1967 | * computation of the premaster secret. This input is optional; |
| 1968 | * if omitted, it defaults to a string of null bytes with the same length |
| 1969 | * as the secret (PSK) input. |
Gilles Peskine | 2cb9e39 | 2019-05-21 15:58:13 +0200 | [diff] [blame] | 1970 | * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key. |
| 1971 | * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label. |
Gilles Peskine | 2cb9e39 | 2019-05-21 15:58:13 +0200 | [diff] [blame] | 1972 | * |
| 1973 | * For the application to TLS-1.2, the seed (which is |
| 1974 | * forwarded to the TLS-1.2 PRF) is the concatenation of the |
| 1975 | * ClientHello.Random + ServerHello.Random, |
Przemek Stekiel | 37c81c4 | 2022-04-07 13:38:53 +0200 | [diff] [blame] | 1976 | * the label is "master secret" or "extended master secret" and |
| 1977 | * the other secret depends on the key exchange specified in the cipher suite: |
| 1978 | * - for a plain PSK cipher suite (RFC 4279, Section 2), omit |
| 1979 | * PSA_KEY_DERIVATION_INPUT_OTHER_SECRET |
| 1980 | * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite |
| 1981 | * (RFC 5489, Section 2), the other secret should be the output of the |
| 1982 | * PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer. |
| 1983 | * The recommended way to pass this input is to use a key derivation |
| 1984 | * algorithm constructed as |
| 1985 | * PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg)) |
| 1986 | * and to call psa_key_derivation_key_agreement(). Alternatively, |
| 1987 | * this input may be an output of `psa_raw_key_agreement()` passed with |
| 1988 | * psa_key_derivation_input_bytes(), or an equivalent input passed with |
| 1989 | * psa_key_derivation_input_bytes() or psa_key_derivation_input_key(). |
| 1990 | * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret |
| 1991 | * should be the 48-byte client challenge (the PreMasterSecret of |
| 1992 | * (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and |
| 1993 | * a 46-byte random string chosen by the client. On the server, this is |
| 1994 | * typically an output of psa_asymmetric_decrypt() using |
| 1995 | * PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation |
| 1996 | * with `psa_key_derivation_input_bytes()`. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1997 | * |
| 1998 | * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the |
| 1999 | * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256. |
| 2000 | * |
| 2001 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 2002 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 2003 | * |
| 2004 | * \return The corresponding TLS-1.2 PSK to MS algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 2005 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2006 | * hash algorithm. |
| 2007 | */ |
| 2008 | #define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \ |
| 2009 | (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 2010 | |
| 2011 | /** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm. |
| 2012 | * |
| 2013 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 2014 | * |
| 2015 | * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise. |
| 2016 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 2017 | * key derivation algorithm identifier. |
| 2018 | */ |
| 2019 | #define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \ |
| 2020 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE) |
| 2021 | #define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \ |
| 2022 | (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) |
| 2023 | |
Andrzej Kurek | 1fafb1f | 2022-09-16 07:19:49 -0400 | [diff] [blame] | 2024 | /* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point |
| 2025 | * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2 |
| 2026 | * will use to derive the session secret, as defined by step 2 of |
| 2027 | * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7. |
| 2028 | * Uses PSA_ALG_SHA_256. |
| 2029 | * This function takes a single input: |
| 2030 | * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE. |
| 2031 | * The only supported curve is secp256r1 (the 256-bit curve in |
| 2032 | * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes. |
Andrzej Kurek | e09aff8 | 2022-09-26 10:59:31 -0400 | [diff] [blame^] | 2033 | * The output has to be read as a single chunk of 32 bytes, defined as |
| 2034 | * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE. |
Andrzej Kurek | 08d34b8 | 2022-07-29 10:00:16 -0400 | [diff] [blame] | 2035 | */ |
Andrzej Kurek | 96b9f23 | 2022-09-26 10:30:46 -0400 | [diff] [blame] | 2036 | #define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t)0x08000609) |
Andrzej Kurek | 08d34b8 | 2022-07-29 10:00:16 -0400 | [diff] [blame] | 2037 | |
Manuel Pégourié-Gonnard | 234b1ec | 2021-04-20 13:07:21 +0200 | [diff] [blame] | 2038 | /* This flag indicates whether the key derivation algorithm is suitable for |
| 2039 | * use on low-entropy secrets such as password - these algorithms are also |
| 2040 | * known as key stretching or password hashing schemes. These are also the |
| 2041 | * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD. |
Manuel Pégourié-Gonnard | 06638ae | 2021-05-04 10:19:37 +0200 | [diff] [blame] | 2042 | * |
| 2043 | * Those algorithms cannot be combined with a key agreement algorithm. |
Manuel Pégourié-Gonnard | 234b1ec | 2021-04-20 13:07:21 +0200 | [diff] [blame] | 2044 | */ |
Manuel Pégourié-Gonnard | 06638ae | 2021-05-04 10:19:37 +0200 | [diff] [blame] | 2045 | #define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000) |
Manuel Pégourié-Gonnard | 234b1ec | 2021-04-20 13:07:21 +0200 | [diff] [blame] | 2046 | |
Manuel Pégourié-Gonnard | 06638ae | 2021-05-04 10:19:37 +0200 | [diff] [blame] | 2047 | #define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100) |
Manuel Pégourié-Gonnard | ffc86ce | 2021-04-30 11:37:57 +0200 | [diff] [blame] | 2048 | /** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm. |
Manuel Pégourié-Gonnard | 7da5791 | 2021-04-20 12:53:07 +0200 | [diff] [blame] | 2049 | * |
| 2050 | * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2). |
Manuel Pégourié-Gonnard | ffc86ce | 2021-04-30 11:37:57 +0200 | [diff] [blame] | 2051 | * This macro specifies the PBKDF2 algorithm constructed using a PRF based on |
| 2052 | * HMAC with the specified hash. |
| 2053 | * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2 |
| 2054 | * using the PRF HMAC-SHA-256. |
Manuel Pégourié-Gonnard | 7da5791 | 2021-04-20 12:53:07 +0200 | [diff] [blame] | 2055 | * |
Manuel Pégourié-Gonnard | 3d72267 | 2021-04-30 12:42:36 +0200 | [diff] [blame] | 2056 | * This key derivation algorithm uses the following inputs, which must be |
| 2057 | * provided in the following order: |
| 2058 | * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count. |
Manuel Pégourié-Gonnard | ffc86ce | 2021-04-30 11:37:57 +0200 | [diff] [blame] | 2059 | * This input step must be used exactly once. |
| 2060 | * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt. |
| 2061 | * This input step must be used one or more times; if used several times, the |
| 2062 | * inputs will be concatenated. This can be used to build the final salt |
| 2063 | * from multiple sources, both public and secret (also known as pepper). |
Manuel Pégourié-Gonnard | 3d72267 | 2021-04-30 12:42:36 +0200 | [diff] [blame] | 2064 | * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed. |
Manuel Pégourié-Gonnard | ffc86ce | 2021-04-30 11:37:57 +0200 | [diff] [blame] | 2065 | * This input step must be used exactly once. |
Manuel Pégourié-Gonnard | 7da5791 | 2021-04-20 12:53:07 +0200 | [diff] [blame] | 2066 | * |
| 2067 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 2068 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 2069 | * |
| 2070 | * \return The corresponding PBKDF2-HMAC-XXX algorithm. |
| 2071 | * \return Unspecified if \p hash_alg is not a supported |
| 2072 | * hash algorithm. |
| 2073 | */ |
| 2074 | #define PSA_ALG_PBKDF2_HMAC(hash_alg) \ |
| 2075 | (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 2076 | |
| 2077 | /** Whether the specified algorithm is a PBKDF2-HMAC algorithm. |
| 2078 | * |
| 2079 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 2080 | * |
| 2081 | * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise. |
| 2082 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 2083 | * key derivation algorithm identifier. |
| 2084 | */ |
| 2085 | #define PSA_ALG_IS_PBKDF2_HMAC(alg) \ |
| 2086 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE) |
Manuel Pégourié-Gonnard | 7da5791 | 2021-04-20 12:53:07 +0200 | [diff] [blame] | 2087 | |
Manuel Pégourié-Gonnard | 6983b4f | 2021-05-03 11:41:49 +0200 | [diff] [blame] | 2088 | /** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm. |
| 2089 | * |
| 2090 | * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2). |
| 2091 | * This macro specifies the PBKDF2 algorithm constructed using the |
| 2092 | * AES-CMAC-PRF-128 PRF specified by RFC 4615. |
| 2093 | * |
| 2094 | * This key derivation algorithm uses the same inputs as |
Manuel Pégourié-Gonnard | 5b79ee2 | 2021-05-04 10:34:56 +0200 | [diff] [blame] | 2095 | * #PSA_ALG_PBKDF2_HMAC() with the same constraints. |
Manuel Pégourié-Gonnard | 6983b4f | 2021-05-03 11:41:49 +0200 | [diff] [blame] | 2096 | */ |
Manuel Pégourié-Gonnard | 06638ae | 2021-05-04 10:19:37 +0200 | [diff] [blame] | 2097 | #define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200) |
Manuel Pégourié-Gonnard | 6983b4f | 2021-05-03 11:41:49 +0200 | [diff] [blame] | 2098 | |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 2099 | #define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff) |
| 2100 | #define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2101 | |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 2102 | /** Macro to build a combined algorithm that chains a key agreement with |
| 2103 | * a key derivation. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2104 | * |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 2105 | * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such |
| 2106 | * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true). |
| 2107 | * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such |
| 2108 | * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true). |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2109 | * |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 2110 | * \return The corresponding key agreement and derivation |
| 2111 | * algorithm. |
| 2112 | * \return Unspecified if \p ka_alg is not a supported |
| 2113 | * key agreement algorithm or \p kdf_alg is not a |
| 2114 | * supported key derivation algorithm. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2115 | */ |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 2116 | #define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \ |
| 2117 | ((ka_alg) | (kdf_alg)) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2118 | |
| 2119 | #define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \ |
| 2120 | (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION) |
| 2121 | |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 2122 | #define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \ |
| 2123 | (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2124 | |
Gilles Peskine | 47e79fb | 2019-02-08 11:24:59 +0100 | [diff] [blame] | 2125 | /** Whether the specified algorithm is a raw key agreement algorithm. |
| 2126 | * |
| 2127 | * A raw key agreement algorithm is one that does not specify |
| 2128 | * a key derivation function. |
| 2129 | * Usually, raw key agreement algorithms are constructed directly with |
| 2130 | * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are |
Ronald Cron | 9678355 | 2020-10-19 12:06:30 +0200 | [diff] [blame] | 2131 | * constructed with #PSA_ALG_KEY_AGREEMENT(). |
Gilles Peskine | 47e79fb | 2019-02-08 11:24:59 +0100 | [diff] [blame] | 2132 | * |
| 2133 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 2134 | * |
| 2135 | * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise. |
| 2136 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 2137 | * algorithm identifier. |
| 2138 | */ |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 2139 | #define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \ |
Gilles Peskine | 47e79fb | 2019-02-08 11:24:59 +0100 | [diff] [blame] | 2140 | (PSA_ALG_IS_KEY_AGREEMENT(alg) && \ |
| 2141 | PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION) |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 2142 | |
| 2143 | #define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \ |
| 2144 | ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg))) |
| 2145 | |
| 2146 | /** The finite-field Diffie-Hellman (DH) key agreement algorithm. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2147 | * |
Gilles Peskine | 2e37c0d | 2019-03-05 19:32:02 +0100 | [diff] [blame] | 2148 | * The shared secret produced by key agreement is |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2149 | * `g^{ab}` in big-endian format. |
| 2150 | * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p` |
| 2151 | * in bits. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2152 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 2153 | #define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000) |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 2154 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2155 | /** Whether the specified algorithm is a finite field Diffie-Hellman algorithm. |
| 2156 | * |
Gilles Peskine | 2e37c0d | 2019-03-05 19:32:02 +0100 | [diff] [blame] | 2157 | * This includes the raw finite field Diffie-Hellman algorithm as well as |
| 2158 | * finite-field Diffie-Hellman followed by any supporter key derivation |
| 2159 | * algorithm. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2160 | * |
| 2161 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 2162 | * |
| 2163 | * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise. |
| 2164 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 2165 | * key agreement algorithm identifier. |
| 2166 | */ |
| 2167 | #define PSA_ALG_IS_FFDH(alg) \ |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 2168 | (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2169 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2170 | /** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm. |
| 2171 | * |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 2172 | * The shared secret produced by key agreement is the x-coordinate of |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2173 | * the shared secret point. It is always `ceiling(m / 8)` bytes long where |
| 2174 | * `m` is the bit size associated with the curve, i.e. the bit size of the |
| 2175 | * order of the curve's coordinate field. When `m` is not a multiple of 8, |
| 2176 | * the byte containing the most significant bit of the shared secret |
| 2177 | * is padded with zero bits. The byte order is either little-endian |
| 2178 | * or big-endian depending on the curve type. |
| 2179 | * |
Paul Elliott | 8ff510a | 2020-06-02 17:19:28 +0100 | [diff] [blame] | 2180 | * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`), |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2181 | * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` |
| 2182 | * in little-endian byte order. |
| 2183 | * The bit size is 448 for Curve448 and 255 for Curve25519. |
| 2184 | * - For Weierstrass curves over prime fields (curve types |
Paul Elliott | 8ff510a | 2020-06-02 17:19:28 +0100 | [diff] [blame] | 2185 | * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`), |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2186 | * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` |
| 2187 | * in big-endian byte order. |
| 2188 | * The bit size is `m = ceiling(log_2(p))` for the field `F_p`. |
| 2189 | * - For Weierstrass curves over binary fields (curve types |
Paul Elliott | 8ff510a | 2020-06-02 17:19:28 +0100 | [diff] [blame] | 2190 | * `PSA_ECC_FAMILY_SECTXXX`), |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2191 | * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` |
| 2192 | * in big-endian byte order. |
| 2193 | * The bit size is `m` for the field `F_{2^m}`. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2194 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 2195 | #define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000) |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 2196 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2197 | /** Whether the specified algorithm is an elliptic curve Diffie-Hellman |
| 2198 | * algorithm. |
| 2199 | * |
Gilles Peskine | 2e37c0d | 2019-03-05 19:32:02 +0100 | [diff] [blame] | 2200 | * This includes the raw elliptic curve Diffie-Hellman algorithm as well as |
| 2201 | * elliptic curve Diffie-Hellman followed by any supporter key derivation |
| 2202 | * algorithm. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2203 | * |
| 2204 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 2205 | * |
| 2206 | * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm, |
| 2207 | * 0 otherwise. |
| 2208 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 2209 | * key agreement algorithm identifier. |
| 2210 | */ |
| 2211 | #define PSA_ALG_IS_ECDH(alg) \ |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 2212 | (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2213 | |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 2214 | /** Whether the specified algorithm encoding is a wildcard. |
| 2215 | * |
| 2216 | * Wildcard values may only be used to set the usage algorithm field in |
| 2217 | * a policy, not to perform an operation. |
| 2218 | * |
| 2219 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 2220 | * |
| 2221 | * \return 1 if \c alg is a wildcard algorithm encoding. |
| 2222 | * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for |
| 2223 | * an operation). |
| 2224 | * \return This macro may return either 0 or 1 if \c alg is not a supported |
| 2225 | * algorithm identifier. |
| 2226 | */ |
Steven Cooreman | d927ed7 | 2021-02-22 19:59:35 +0100 | [diff] [blame] | 2227 | #define PSA_ALG_IS_WILDCARD(alg) \ |
| 2228 | (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \ |
| 2229 | PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \ |
| 2230 | PSA_ALG_IS_MAC(alg) ? \ |
| 2231 | (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \ |
| 2232 | PSA_ALG_IS_AEAD(alg) ? \ |
| 2233 | (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \ |
Steven Cooreman | ee18b1f | 2021-02-08 11:44:21 +0100 | [diff] [blame] | 2234 | (alg) == PSA_ALG_ANY_HASH) |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 2235 | |
Manuel Pégourié-Gonnard | 40b81bf | 2021-05-03 11:53:40 +0200 | [diff] [blame] | 2236 | /** Get the hash used by a composite algorithm. |
| 2237 | * |
| 2238 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 2239 | * |
| 2240 | * \return The underlying hash algorithm if alg is a composite algorithm that |
| 2241 | * uses a hash algorithm. |
| 2242 | * |
Manuel Pégourié-Gonnard | f0c28ef | 2021-05-07 12:13:48 +0200 | [diff] [blame] | 2243 | * \return \c 0 if alg is not a composite algorithm that uses a hash. |
Manuel Pégourié-Gonnard | 40b81bf | 2021-05-03 11:53:40 +0200 | [diff] [blame] | 2244 | */ |
| 2245 | #define PSA_ALG_GET_HASH(alg) \ |
Manuel Pégourié-Gonnard | f0c28ef | 2021-05-07 12:13:48 +0200 | [diff] [blame] | 2246 | (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t)0) : 0x02000000 | ((alg) & 0x000000ff)) |
Manuel Pégourié-Gonnard | 40b81bf | 2021-05-03 11:53:40 +0200 | [diff] [blame] | 2247 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2248 | /**@}*/ |
| 2249 | |
| 2250 | /** \defgroup key_lifetimes Key lifetimes |
| 2251 | * @{ |
| 2252 | */ |
| 2253 | |
Gilles Peskine | 7973399 | 2022-06-20 18:41:20 +0200 | [diff] [blame] | 2254 | /* Note that location and persistence level values are embedded in the |
| 2255 | * persistent key store, as part of key metadata. As a consequence, they |
| 2256 | * must not be changed (unless the storage format version changes). |
| 2257 | */ |
| 2258 | |
Gilles Peskine | 2d2bb1d | 2020-02-05 19:07:18 +0100 | [diff] [blame] | 2259 | /** The default lifetime for volatile keys. |
| 2260 | * |
Ronald Cron | cf56a0a | 2020-08-04 09:51:30 +0200 | [diff] [blame] | 2261 | * A volatile key only exists as long as the identifier to it is not destroyed. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2262 | * The key material is guaranteed to be erased on a power reset. |
Gilles Peskine | 2d2bb1d | 2020-02-05 19:07:18 +0100 | [diff] [blame] | 2263 | * |
| 2264 | * A key with this lifetime is typically stored in the RAM area of the |
| 2265 | * PSA Crypto subsystem. However this is an implementation choice. |
| 2266 | * If an implementation stores data about the key in a non-volatile memory, |
| 2267 | * it must release all the resources associated with the key and erase the |
| 2268 | * key material if the calling application terminates. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2269 | */ |
| 2270 | #define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000) |
| 2271 | |
Gilles Peskine | 5dcb74f | 2020-05-04 18:42:44 +0200 | [diff] [blame] | 2272 | /** The default lifetime for persistent keys. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2273 | * |
| 2274 | * A persistent key remains in storage until it is explicitly destroyed or |
| 2275 | * until the corresponding storage area is wiped. This specification does |
Gilles Peskine | d0107b9 | 2020-08-18 23:05:06 +0200 | [diff] [blame] | 2276 | * not define any mechanism to wipe a storage area, but integrations may |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2277 | * provide their own mechanism (for example to perform a factory reset, |
| 2278 | * to prepare for device refurbishment, or to uninstall an application). |
| 2279 | * |
| 2280 | * This lifetime value is the default storage area for the calling |
Gilles Peskine | d0107b9 | 2020-08-18 23:05:06 +0200 | [diff] [blame] | 2281 | * application. Integrations of Mbed TLS may support other persistent lifetimes. |
Gilles Peskine | 5dcb74f | 2020-05-04 18:42:44 +0200 | [diff] [blame] | 2282 | * See ::psa_key_lifetime_t for more information. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2283 | */ |
| 2284 | #define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001) |
| 2285 | |
Gilles Peskine | aff1181 | 2020-05-04 19:03:10 +0200 | [diff] [blame] | 2286 | /** The persistence level of volatile keys. |
| 2287 | * |
| 2288 | * See ::psa_key_persistence_t for more information. |
| 2289 | */ |
Gilles Peskine | bbb3c18 | 2020-05-04 18:42:06 +0200 | [diff] [blame] | 2290 | #define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00) |
Gilles Peskine | aff1181 | 2020-05-04 19:03:10 +0200 | [diff] [blame] | 2291 | |
| 2292 | /** The default persistence level for persistent keys. |
| 2293 | * |
| 2294 | * See ::psa_key_persistence_t for more information. |
| 2295 | */ |
Gilles Peskine | ee04e69 | 2020-05-04 18:52:21 +0200 | [diff] [blame] | 2296 | #define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01) |
Gilles Peskine | aff1181 | 2020-05-04 19:03:10 +0200 | [diff] [blame] | 2297 | |
| 2298 | /** A persistence level indicating that a key is never destroyed. |
| 2299 | * |
| 2300 | * See ::psa_key_persistence_t for more information. |
| 2301 | */ |
Gilles Peskine | bbb3c18 | 2020-05-04 18:42:06 +0200 | [diff] [blame] | 2302 | #define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff) |
Gilles Peskine | 2d2bb1d | 2020-02-05 19:07:18 +0100 | [diff] [blame] | 2303 | |
| 2304 | #define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \ |
Gilles Peskine | 4cfa443 | 2020-05-06 13:44:32 +0200 | [diff] [blame] | 2305 | ((psa_key_persistence_t)((lifetime) & 0x000000ff)) |
Gilles Peskine | 2d2bb1d | 2020-02-05 19:07:18 +0100 | [diff] [blame] | 2306 | |
| 2307 | #define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \ |
Gilles Peskine | 4cfa443 | 2020-05-06 13:44:32 +0200 | [diff] [blame] | 2308 | ((psa_key_location_t)((lifetime) >> 8)) |
Gilles Peskine | 2d2bb1d | 2020-02-05 19:07:18 +0100 | [diff] [blame] | 2309 | |
| 2310 | /** Whether a key lifetime indicates that the key is volatile. |
| 2311 | * |
| 2312 | * A volatile key is automatically destroyed by the implementation when |
| 2313 | * the application instance terminates. In particular, a volatile key |
| 2314 | * is automatically destroyed on a power reset of the device. |
| 2315 | * |
| 2316 | * A key that is not volatile is persistent. Persistent keys are |
| 2317 | * preserved until the application explicitly destroys them or until an |
| 2318 | * implementation-specific device management event occurs (for example, |
| 2319 | * a factory reset). |
| 2320 | * |
| 2321 | * \param lifetime The lifetime value to query (value of type |
| 2322 | * ::psa_key_lifetime_t). |
| 2323 | * |
| 2324 | * \return \c 1 if the key is volatile, otherwise \c 0. |
| 2325 | */ |
| 2326 | #define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \ |
| 2327 | (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \ |
Steven Cooreman | db06445 | 2020-06-01 12:29:26 +0200 | [diff] [blame] | 2328 | PSA_KEY_PERSISTENCE_VOLATILE) |
Gilles Peskine | 2d2bb1d | 2020-02-05 19:07:18 +0100 | [diff] [blame] | 2329 | |
Gilles Peskine | d133bb2 | 2021-04-21 20:05:59 +0200 | [diff] [blame] | 2330 | /** Whether a key lifetime indicates that the key is read-only. |
| 2331 | * |
| 2332 | * Read-only keys cannot be created or destroyed through the PSA Crypto API. |
| 2333 | * They must be created through platform-specific means that bypass the API. |
| 2334 | * |
| 2335 | * Some platforms may offer ways to destroy read-only keys. For example, |
Gilles Peskine | 91466c8 | 2021-06-07 23:21:50 +0200 | [diff] [blame] | 2336 | * consider a platform with multiple levels of privilege, where a |
| 2337 | * low-privilege application can use a key but is not allowed to destroy |
| 2338 | * it, and the platform exposes the key to the application with a read-only |
| 2339 | * lifetime. High-privilege code can destroy the key even though the |
| 2340 | * application sees the key as read-only. |
Gilles Peskine | d133bb2 | 2021-04-21 20:05:59 +0200 | [diff] [blame] | 2341 | * |
| 2342 | * \param lifetime The lifetime value to query (value of type |
| 2343 | * ::psa_key_lifetime_t). |
| 2344 | * |
| 2345 | * \return \c 1 if the key is read-only, otherwise \c 0. |
| 2346 | */ |
| 2347 | #define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \ |
| 2348 | (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \ |
| 2349 | PSA_KEY_PERSISTENCE_READ_ONLY) |
| 2350 | |
Gilles Peskine | c4ee2f3 | 2020-05-04 19:07:18 +0200 | [diff] [blame] | 2351 | /** Construct a lifetime from a persistence level and a location. |
| 2352 | * |
| 2353 | * \param persistence The persistence level |
| 2354 | * (value of type ::psa_key_persistence_t). |
| 2355 | * \param location The location indicator |
| 2356 | * (value of type ::psa_key_location_t). |
| 2357 | * |
| 2358 | * \return The constructed lifetime value. |
| 2359 | */ |
| 2360 | #define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \ |
| 2361 | ((location) << 8 | (persistence)) |
| 2362 | |
Gilles Peskine | aff1181 | 2020-05-04 19:03:10 +0200 | [diff] [blame] | 2363 | /** The local storage area for persistent keys. |
| 2364 | * |
| 2365 | * This storage area is available on all systems that can store persistent |
| 2366 | * keys without delegating the storage to a third-party cryptoprocessor. |
| 2367 | * |
| 2368 | * See ::psa_key_location_t for more information. |
| 2369 | */ |
Gilles Peskine | ee04e69 | 2020-05-04 18:52:21 +0200 | [diff] [blame] | 2370 | #define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000) |
Gilles Peskine | aff1181 | 2020-05-04 19:03:10 +0200 | [diff] [blame] | 2371 | |
Gilles Peskine | bbb3c18 | 2020-05-04 18:42:06 +0200 | [diff] [blame] | 2372 | #define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000) |
Gilles Peskine | 2d2bb1d | 2020-02-05 19:07:18 +0100 | [diff] [blame] | 2373 | |
Gilles Peskine | 7973399 | 2022-06-20 18:41:20 +0200 | [diff] [blame] | 2374 | /* Note that key identifier values are embedded in the |
| 2375 | * persistent key store, as part of key metadata. As a consequence, they |
| 2376 | * must not be changed (unless the storage format version changes). |
| 2377 | */ |
| 2378 | |
Mateusz Starzyk | c5c5b93 | 2021-08-26 13:32:30 +0200 | [diff] [blame] | 2379 | /** The null key identifier. |
| 2380 | */ |
| 2381 | #define PSA_KEY_ID_NULL ((psa_key_id_t)0) |
Gilles Peskine | 4a231b8 | 2019-05-06 18:56:14 +0200 | [diff] [blame] | 2382 | /** The minimum value for a key identifier chosen by the application. |
| 2383 | */ |
Ronald Cron | 039a98b | 2020-07-23 16:07:42 +0200 | [diff] [blame] | 2384 | #define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001) |
Gilles Peskine | 280948a | 2019-05-16 15:27:14 +0200 | [diff] [blame] | 2385 | /** The maximum value for a key identifier chosen by the application. |
Gilles Peskine | 4a231b8 | 2019-05-06 18:56:14 +0200 | [diff] [blame] | 2386 | */ |
Ronald Cron | 039a98b | 2020-07-23 16:07:42 +0200 | [diff] [blame] | 2387 | #define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff) |
Gilles Peskine | 280948a | 2019-05-16 15:27:14 +0200 | [diff] [blame] | 2388 | /** The minimum value for a key identifier chosen by the implementation. |
Gilles Peskine | 4a231b8 | 2019-05-06 18:56:14 +0200 | [diff] [blame] | 2389 | */ |
Ronald Cron | 039a98b | 2020-07-23 16:07:42 +0200 | [diff] [blame] | 2390 | #define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000) |
Gilles Peskine | 280948a | 2019-05-16 15:27:14 +0200 | [diff] [blame] | 2391 | /** The maximum value for a key identifier chosen by the implementation. |
Gilles Peskine | 4a231b8 | 2019-05-06 18:56:14 +0200 | [diff] [blame] | 2392 | */ |
Ronald Cron | 039a98b | 2020-07-23 16:07:42 +0200 | [diff] [blame] | 2393 | #define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff) |
Gilles Peskine | 4a231b8 | 2019-05-06 18:56:14 +0200 | [diff] [blame] | 2394 | |
Ronald Cron | 7424f0d | 2020-09-14 16:17:41 +0200 | [diff] [blame] | 2395 | |
| 2396 | #if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER) |
| 2397 | |
| 2398 | #define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 ) |
| 2399 | #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id ) |
| 2400 | #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 ) |
| 2401 | |
| 2402 | /** Utility to initialize a key identifier at runtime. |
| 2403 | * |
| 2404 | * \param unused Unused parameter. |
| 2405 | * \param key_id Identifier of the key. |
| 2406 | */ |
| 2407 | static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make( |
| 2408 | unsigned int unused, psa_key_id_t key_id ) |
| 2409 | { |
| 2410 | (void)unused; |
| 2411 | |
| 2412 | return( key_id ); |
| 2413 | } |
| 2414 | |
| 2415 | /** Compare two key identifiers. |
| 2416 | * |
| 2417 | * \param id1 First key identifier. |
| 2418 | * \param id2 Second key identifier. |
| 2419 | * |
| 2420 | * \return Non-zero if the two key identifier are equal, zero otherwise. |
| 2421 | */ |
| 2422 | static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1, |
| 2423 | mbedtls_svc_key_id_t id2 ) |
| 2424 | { |
| 2425 | return( id1 == id2 ); |
| 2426 | } |
| 2427 | |
Ronald Cron | c4d1b51 | 2020-07-31 11:26:37 +0200 | [diff] [blame] | 2428 | /** Check whether a key identifier is null. |
| 2429 | * |
| 2430 | * \param key Key identifier. |
| 2431 | * |
| 2432 | * \return Non-zero if the key identifier is null, zero otherwise. |
| 2433 | */ |
| 2434 | static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key ) |
| 2435 | { |
| 2436 | return( key == 0 ); |
| 2437 | } |
| 2438 | |
Ronald Cron | 7424f0d | 2020-09-14 16:17:41 +0200 | [diff] [blame] | 2439 | #else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */ |
| 2440 | |
| 2441 | #define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } ) |
Antonio de Angelis | 6729474 | 2022-05-05 14:11:32 +0100 | [diff] [blame] | 2442 | #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).MBEDTLS_PRIVATE(key_id) ) |
| 2443 | #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).MBEDTLS_PRIVATE(owner) ) |
Ronald Cron | 7424f0d | 2020-09-14 16:17:41 +0200 | [diff] [blame] | 2444 | |
| 2445 | /** Utility to initialize a key identifier at runtime. |
| 2446 | * |
| 2447 | * \param owner_id Identifier of the key owner. |
| 2448 | * \param key_id Identifier of the key. |
| 2449 | */ |
| 2450 | static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make( |
| 2451 | mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id ) |
| 2452 | { |
Mateusz Starzyk | 363eb29 | 2021-05-19 17:32:44 +0200 | [diff] [blame] | 2453 | return( (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id, |
| 2454 | .MBEDTLS_PRIVATE(owner) = owner_id } ); |
Ronald Cron | 7424f0d | 2020-09-14 16:17:41 +0200 | [diff] [blame] | 2455 | } |
| 2456 | |
| 2457 | /** Compare two key identifiers. |
| 2458 | * |
| 2459 | * \param id1 First key identifier. |
| 2460 | * \param id2 Second key identifier. |
| 2461 | * |
| 2462 | * \return Non-zero if the two key identifier are equal, zero otherwise. |
| 2463 | */ |
| 2464 | static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1, |
| 2465 | mbedtls_svc_key_id_t id2 ) |
| 2466 | { |
Mateusz Starzyk | 363eb29 | 2021-05-19 17:32:44 +0200 | [diff] [blame] | 2467 | return( ( id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id) ) && |
| 2468 | mbedtls_key_owner_id_equal( id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner) ) ); |
Ronald Cron | 7424f0d | 2020-09-14 16:17:41 +0200 | [diff] [blame] | 2469 | } |
| 2470 | |
Ronald Cron | c4d1b51 | 2020-07-31 11:26:37 +0200 | [diff] [blame] | 2471 | /** Check whether a key identifier is null. |
| 2472 | * |
| 2473 | * \param key Key identifier. |
| 2474 | * |
| 2475 | * \return Non-zero if the key identifier is null, zero otherwise. |
| 2476 | */ |
| 2477 | static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key ) |
| 2478 | { |
Gilles Peskine | 52bb83e | 2021-05-28 12:59:49 +0200 | [diff] [blame] | 2479 | return( key.MBEDTLS_PRIVATE(key_id) == 0 ); |
Ronald Cron | c4d1b51 | 2020-07-31 11:26:37 +0200 | [diff] [blame] | 2480 | } |
| 2481 | |
Ronald Cron | 7424f0d | 2020-09-14 16:17:41 +0200 | [diff] [blame] | 2482 | #endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2483 | |
| 2484 | /**@}*/ |
| 2485 | |
| 2486 | /** \defgroup policy Key policies |
| 2487 | * @{ |
| 2488 | */ |
| 2489 | |
Gilles Peskine | 7973399 | 2022-06-20 18:41:20 +0200 | [diff] [blame] | 2490 | /* Note that key usage flags are embedded in the |
| 2491 | * persistent key store, as part of key metadata. As a consequence, they |
| 2492 | * must not be changed (unless the storage format version changes). |
| 2493 | */ |
| 2494 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2495 | /** Whether the key may be exported. |
| 2496 | * |
| 2497 | * A public key or the public part of a key pair may always be exported |
| 2498 | * regardless of the value of this permission flag. |
| 2499 | * |
| 2500 | * If a key does not have export permission, implementations shall not |
| 2501 | * allow the key to be exported in plain form from the cryptoprocessor, |
| 2502 | * whether through psa_export_key() or through a proprietary interface. |
| 2503 | * The key may however be exportable in a wrapped form, i.e. in a form |
| 2504 | * where it is encrypted by another key. |
| 2505 | */ |
| 2506 | #define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001) |
| 2507 | |
Gilles Peskine | 8e0206a | 2019-05-14 14:24:28 +0200 | [diff] [blame] | 2508 | /** Whether the key may be copied. |
| 2509 | * |
Gilles Peskine | d6a8f5f | 2019-05-14 16:25:50 +0200 | [diff] [blame] | 2510 | * This flag allows the use of psa_copy_key() to make a copy of the key |
Gilles Peskine | 8e0206a | 2019-05-14 14:24:28 +0200 | [diff] [blame] | 2511 | * with the same policy or a more restrictive policy. |
| 2512 | * |
Gilles Peskine | d6a8f5f | 2019-05-14 16:25:50 +0200 | [diff] [blame] | 2513 | * For lifetimes for which the key is located in a secure element which |
| 2514 | * enforce the non-exportability of keys, copying a key outside the secure |
| 2515 | * element also requires the usage flag #PSA_KEY_USAGE_EXPORT. |
| 2516 | * Copying the key inside the secure element is permitted with just |
| 2517 | * #PSA_KEY_USAGE_COPY if the secure element supports it. |
| 2518 | * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or |
Gilles Peskine | 8e0206a | 2019-05-14 14:24:28 +0200 | [diff] [blame] | 2519 | * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY |
| 2520 | * is sufficient to permit the copy. |
| 2521 | */ |
| 2522 | #define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002) |
| 2523 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2524 | /** Whether the key may be used to encrypt a message. |
| 2525 | * |
| 2526 | * This flag allows the key to be used for a symmetric encryption operation, |
| 2527 | * for an AEAD encryption-and-authentication operation, |
| 2528 | * or for an asymmetric encryption operation, |
| 2529 | * if otherwise permitted by the key's type and policy. |
| 2530 | * |
| 2531 | * For a key pair, this concerns the public key. |
| 2532 | */ |
| 2533 | #define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100) |
| 2534 | |
| 2535 | /** Whether the key may be used to decrypt a message. |
| 2536 | * |
| 2537 | * This flag allows the key to be used for a symmetric decryption operation, |
| 2538 | * for an AEAD decryption-and-verification operation, |
| 2539 | * or for an asymmetric decryption operation, |
| 2540 | * if otherwise permitted by the key's type and policy. |
| 2541 | * |
| 2542 | * For a key pair, this concerns the private key. |
| 2543 | */ |
| 2544 | #define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200) |
| 2545 | |
| 2546 | /** Whether the key may be used to sign a message. |
| 2547 | * |
gabor-mezei-arm | 4a21019 | 2021-04-14 21:14:28 +0200 | [diff] [blame] | 2548 | * This flag allows the key to be used for a MAC calculation operation or for |
| 2549 | * an asymmetric message signature operation, if otherwise permitted by the |
| 2550 | * key’s type and policy. |
| 2551 | * |
| 2552 | * For a key pair, this concerns the private key. |
| 2553 | */ |
| 2554 | #define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400) |
| 2555 | |
| 2556 | /** Whether the key may be used to verify a message. |
| 2557 | * |
| 2558 | * This flag allows the key to be used for a MAC verification operation or for |
| 2559 | * an asymmetric message signature verification operation, if otherwise |
| 2560 | * permitted by the key’s type and policy. |
| 2561 | * |
| 2562 | * For a key pair, this concerns the public key. |
| 2563 | */ |
| 2564 | #define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800) |
| 2565 | |
| 2566 | /** Whether the key may be used to sign a message. |
| 2567 | * |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2568 | * This flag allows the key to be used for a MAC calculation operation |
| 2569 | * or for an asymmetric signature operation, |
| 2570 | * if otherwise permitted by the key's type and policy. |
| 2571 | * |
| 2572 | * For a key pair, this concerns the private key. |
| 2573 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 2574 | #define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2575 | |
| 2576 | /** Whether the key may be used to verify a message signature. |
| 2577 | * |
| 2578 | * This flag allows the key to be used for a MAC verification operation |
| 2579 | * or for an asymmetric signature verification operation, |
| 2580 | * if otherwise permitted by by the key's type and policy. |
| 2581 | * |
| 2582 | * For a key pair, this concerns the public key. |
| 2583 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 2584 | #define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2585 | |
Manuel Pégourié-Gonnard | 759438c | 2021-04-20 11:18:53 +0200 | [diff] [blame] | 2586 | /** Whether the key may be used to derive other keys or produce a password |
| 2587 | * hash. |
Andrew Thoelke | 52d18cd | 2021-06-25 11:03:57 +0100 | [diff] [blame] | 2588 | * |
Andrew Thoelke | a0f4b59 | 2021-06-24 16:47:14 +0100 | [diff] [blame] | 2589 | * This flag allows the key to be used for a key derivation operation or for |
| 2590 | * a key agreement operation, if otherwise permitted by by the key's type and |
| 2591 | * policy. |
Manuel Pégourié-Gonnard | 759438c | 2021-04-20 11:18:53 +0200 | [diff] [blame] | 2592 | * |
Andrew Thoelke | a0f4b59 | 2021-06-24 16:47:14 +0100 | [diff] [blame] | 2593 | * If this flag is present on all keys used in calls to |
| 2594 | * psa_key_derivation_input_key() for a key derivation operation, then it |
| 2595 | * permits calling psa_key_derivation_output_bytes() or |
| 2596 | * psa_key_derivation_output_key() at the end of the operation. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2597 | */ |
Bence Szépkúti | a294551 | 2020-12-03 21:40:17 +0100 | [diff] [blame] | 2598 | #define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2599 | |
Manuel Pégourié-Gonnard | 9023cac | 2021-05-03 10:23:12 +0200 | [diff] [blame] | 2600 | /** Whether the key may be used to verify the result of a key derivation, |
| 2601 | * including password hashing. |
Manuel Pégourié-Gonnard | 759438c | 2021-04-20 11:18:53 +0200 | [diff] [blame] | 2602 | * |
Manuel Pégourié-Gonnard | 9023cac | 2021-05-03 10:23:12 +0200 | [diff] [blame] | 2603 | * This flag allows the key to be used: |
Manuel Pégourié-Gonnard | 759438c | 2021-04-20 11:18:53 +0200 | [diff] [blame] | 2604 | * |
Andrew Thoelke | a0f4b59 | 2021-06-24 16:47:14 +0100 | [diff] [blame] | 2605 | * This flag allows the key to be used in a key derivation operation, if |
| 2606 | * otherwise permitted by by the key's type and policy. |
| 2607 | * |
| 2608 | * If this flag is present on all keys used in calls to |
| 2609 | * psa_key_derivation_input_key() for a key derivation operation, then it |
| 2610 | * permits calling psa_key_derivation_verify_bytes() or |
| 2611 | * psa_key_derivation_verify_key() at the end of the operation. |
Manuel Pégourié-Gonnard | 759438c | 2021-04-20 11:18:53 +0200 | [diff] [blame] | 2612 | */ |
Manuel Pégourié-Gonnard | 9023cac | 2021-05-03 10:23:12 +0200 | [diff] [blame] | 2613 | #define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000) |
Manuel Pégourié-Gonnard | 759438c | 2021-04-20 11:18:53 +0200 | [diff] [blame] | 2614 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2615 | /**@}*/ |
| 2616 | |
Gilles Peskine | b70a0fd | 2019-01-07 22:59:38 +0100 | [diff] [blame] | 2617 | /** \defgroup derivation Key derivation |
| 2618 | * @{ |
| 2619 | */ |
| 2620 | |
Gilles Peskine | 7973399 | 2022-06-20 18:41:20 +0200 | [diff] [blame] | 2621 | /* Key input steps are not embedded in the persistent storage, so you can |
| 2622 | * change them if needed: it's only an ABI change. */ |
| 2623 | |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 2624 | /** A secret input for key derivation. |
| 2625 | * |
Gilles Peskine | 224b0d6 | 2019-09-23 18:13:17 +0200 | [diff] [blame] | 2626 | * This should be a key of type #PSA_KEY_TYPE_DERIVE |
| 2627 | * (passed to psa_key_derivation_input_key()) |
| 2628 | * or the shared secret resulting from a key agreement |
| 2629 | * (obtained via psa_key_derivation_key_agreement()). |
Gilles Peskine | 178c9aa | 2019-09-24 18:21:06 +0200 | [diff] [blame] | 2630 | * |
| 2631 | * The secret can also be a direct input (passed to |
| 2632 | * key_derivation_input_bytes()). In this case, the derivation operation |
Andrew Thoelke | a0f4b59 | 2021-06-24 16:47:14 +0100 | [diff] [blame] | 2633 | * may not be used to derive keys: the operation will only allow |
| 2634 | * psa_key_derivation_output_bytes(), |
| 2635 | * psa_key_derivation_verify_bytes(), or |
| 2636 | * psa_key_derivation_verify_key(), but not |
| 2637 | * psa_key_derivation_output_key(). |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 2638 | */ |
Gilles Peskine | cf7292e | 2019-05-16 17:53:40 +0200 | [diff] [blame] | 2639 | #define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101) |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 2640 | |
Manuel Pégourié-Gonnard | 5a67992 | 2021-04-20 11:30:11 +0200 | [diff] [blame] | 2641 | /** A low-entropy secret input for password hashing / key stretching. |
| 2642 | * |
Manuel Pégourié-Gonnard | ffc86ce | 2021-04-30 11:37:57 +0200 | [diff] [blame] | 2643 | * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to |
| 2644 | * psa_key_derivation_input_key()) or a direct input (passed to |
| 2645 | * psa_key_derivation_input_bytes()) that is a password or passphrase. It can |
| 2646 | * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or |
| 2647 | * the shared secret resulting from a key agreement. |
Manuel Pégourié-Gonnard | 5a67992 | 2021-04-20 11:30:11 +0200 | [diff] [blame] | 2648 | * |
Manuel Pégourié-Gonnard | 730f62a | 2021-05-05 10:05:06 +0200 | [diff] [blame] | 2649 | * The secret can also be a direct input (passed to |
| 2650 | * key_derivation_input_bytes()). In this case, the derivation operation |
Andrew Thoelke | a0f4b59 | 2021-06-24 16:47:14 +0100 | [diff] [blame] | 2651 | * may not be used to derive keys: the operation will only allow |
| 2652 | * psa_key_derivation_output_bytes(), |
| 2653 | * psa_key_derivation_verify_bytes(), or |
| 2654 | * psa_key_derivation_verify_key(), but not |
| 2655 | * psa_key_derivation_output_key(). |
Manuel Pégourié-Gonnard | 5a67992 | 2021-04-20 11:30:11 +0200 | [diff] [blame] | 2656 | */ |
| 2657 | #define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102) |
| 2658 | |
Przemek Stekiel | 37c81c4 | 2022-04-07 13:38:53 +0200 | [diff] [blame] | 2659 | /** A high-entropy additional secret input for key derivation. |
| 2660 | * |
| 2661 | * This is typically the shared secret resulting from a key agreement obtained |
| 2662 | * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of |
| 2663 | * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or |
| 2664 | * a direct input passed to `psa_key_derivation_input_bytes()`. |
| 2665 | */ |
| 2666 | #define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \ |
| 2667 | ((psa_key_derivation_step_t)0x0103) |
| 2668 | |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 2669 | /** A label for key derivation. |
| 2670 | * |
Gilles Peskine | 224b0d6 | 2019-09-23 18:13:17 +0200 | [diff] [blame] | 2671 | * This should be a direct input. |
| 2672 | * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA. |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 2673 | */ |
Gilles Peskine | cf7292e | 2019-05-16 17:53:40 +0200 | [diff] [blame] | 2674 | #define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201) |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 2675 | |
| 2676 | /** A salt for key derivation. |
| 2677 | * |
Gilles Peskine | 224b0d6 | 2019-09-23 18:13:17 +0200 | [diff] [blame] | 2678 | * This should be a direct input. |
Manuel Pégourié-Gonnard | 5a67992 | 2021-04-20 11:30:11 +0200 | [diff] [blame] | 2679 | * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or |
| 2680 | * #PSA_KEY_TYPE_PEPPER. |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 2681 | */ |
Gilles Peskine | cf7292e | 2019-05-16 17:53:40 +0200 | [diff] [blame] | 2682 | #define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202) |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 2683 | |
| 2684 | /** An information string for key derivation. |
| 2685 | * |
Gilles Peskine | 224b0d6 | 2019-09-23 18:13:17 +0200 | [diff] [blame] | 2686 | * This should be a direct input. |
| 2687 | * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA. |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 2688 | */ |
Gilles Peskine | cf7292e | 2019-05-16 17:53:40 +0200 | [diff] [blame] | 2689 | #define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203) |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 2690 | |
Gilles Peskine | 2cb9e39 | 2019-05-21 15:58:13 +0200 | [diff] [blame] | 2691 | /** A seed for key derivation. |
| 2692 | * |
Gilles Peskine | 224b0d6 | 2019-09-23 18:13:17 +0200 | [diff] [blame] | 2693 | * This should be a direct input. |
| 2694 | * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA. |
Gilles Peskine | 2cb9e39 | 2019-05-21 15:58:13 +0200 | [diff] [blame] | 2695 | */ |
| 2696 | #define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204) |
| 2697 | |
Manuel Pégourié-Gonnard | 5a67992 | 2021-04-20 11:30:11 +0200 | [diff] [blame] | 2698 | /** A cost parameter for password hashing / key stretching. |
| 2699 | * |
Manuel Pégourié-Gonnard | 22f08bc | 2021-04-20 11:57:34 +0200 | [diff] [blame] | 2700 | * This must be a direct input, passed to psa_key_derivation_input_integer(). |
Manuel Pégourié-Gonnard | 5a67992 | 2021-04-20 11:30:11 +0200 | [diff] [blame] | 2701 | */ |
| 2702 | #define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205) |
| 2703 | |
Gilles Peskine | b70a0fd | 2019-01-07 22:59:38 +0100 | [diff] [blame] | 2704 | /**@}*/ |
| 2705 | |
Bence Szépkúti | b639d43 | 2021-04-21 10:33:54 +0200 | [diff] [blame] | 2706 | /** \defgroup helper_macros Helper macros |
| 2707 | * @{ |
| 2708 | */ |
| 2709 | |
| 2710 | /* Helper macros */ |
| 2711 | |
| 2712 | /** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm |
| 2713 | * regardless of the tag length they encode. |
| 2714 | * |
| 2715 | * \param aead_alg_1 An AEAD algorithm identifier. |
| 2716 | * \param aead_alg_2 An AEAD algorithm identifier. |
| 2717 | * |
| 2718 | * \return 1 if both identifiers refer to the same AEAD algorithm, |
| 2719 | * 0 otherwise. |
| 2720 | * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are |
| 2721 | * a supported AEAD algorithm. |
| 2722 | */ |
| 2723 | #define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \ |
| 2724 | (!(((aead_alg_1) ^ (aead_alg_2)) & \ |
| 2725 | ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG))) |
| 2726 | |
| 2727 | /**@}*/ |
| 2728 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 2729 | #endif /* PSA_CRYPTO_VALUES_H */ |